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1. INTRODUCTION 

 The Internet of Things (IoT) has emerged as one 

of the most transformative paradigms in the digital era, 

redefining how humans, devices, and infrastructures 

interact. By enabling ubiquitous interconnectivity among 

heterogeneous devices, IoT has catalyzed innovation 

across diverse domains including smart homes, industrial 

automation, healthcare, agriculture, energy management, 

and intelligent transportation systems (Gubbi, 2013; Xu , 

2014; Al-Fuqaha, 2015). The exponential growth of IoT 

devices—estimated to surpass 30 billion by 2030—has 

created vast opportunities for economic development and 

societal benefits, but it has also expanded the attack surface 

for cyber adversaries (Statista, 2024; Cisco, 2023). 

IoT systems are inherently distinct from traditional 

computing paradigms due to their resource-constrained 

nature, heterogeneity, and large-scale deployment. These 

characteristics present profound security challenges. 

Devices typically operate with limited computational 

power, energy, and storage, rendering conventional 

security protocols impractical (Weber & Studer, 2016; Li, 

2018). Furthermore, the lack of standardized architectures 

and protocols across IoT ecosystems amplifies 

vulnerabilities, creating fertile ground for diverse 

cybersecurity attack vectors (Sicari, 2015; Bera, 2020). 

The significance of IoT security extends beyond 

technological concerns. As IoT becomes increasingly 

integrated into critical infrastructures—such as smart 

grids, healthcare monitoring systems, intelligent 

transportation networks, and industrial control systems—

security breaches may result in not only financial and 
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reputational damages but also threats to human life and 

national security (Roman, 2018; Humayed, 2017). High-

profile incidents such as the Mirai botnet attack in 2016, 

which exploited unsecured IoT devices to launch massive 

Distributed Denial of Service (DDoS) attacks, underscore 

the catastrophic potential of IoT vulnerabilities (Kolias, 

2017). 

Research into IoT security has evolved significantly over 

the past decade. Early studies (2013–2016) primarily 

emphasized device authentication, lightweight encryption, 

and privacy protection (Zhang, 2014; Jing, 2014). During 

this period, security was often treated as an afterthought 

rather than an integral design principle. The Mirai incident 

shifted global attention to IoT as a botnet-enabling 

infrastructure, leading to intensified exploration of 

intrusion detection, anomaly detection, and network-layer 

defenses (Antonakakis, 2017). 

From 2017 onwards, IoT cybersecurity research 

diversified into machine learning (ML)-driven intrusion 

detection systems, blockchain-based trust frameworks, and 

context-aware authentication schemes (Ferrag, 2018; Bera 

et al., 2020; Sharma et al., 2022). The increasing adoption 

of Artificial Intelligence (AI) in IoT environments 

introduced novel attack surfaces, including adversarial 

machine learning and data poisoning threats (Rigaki & 

Garcia, 2018; Kumar, 2021). Meanwhile, the COVID-19 

pandemic accelerated IoT adoption in telemedicine, 

remote education, and smart logistics, thereby amplifying 

risks of privacy breaches and ransomware (Rahman, 2020; 

Hossain, 2021). 

Between 2021 and 2025, the rise of edge computing, 5G, 

and digital twins has further complicated the IoT threat 

landscape. Researchers increasingly highlight supply 

chain vulnerabilities, cross-layer attacks, and federated 

learning-based defenses as emergent research directions 

(Nguyen, 2022; Wang, 2023). Thus, the evolution of IoT 

security reflects a dynamic arms race between adversaries 

and defenders, where new technologies simultaneously 

introduce innovations and threats. 

Despite abundant research, IoT security literature remains 

fragmented, with taxonomies differing in focus and scope. 

Some studies categorize attacks by system layer (device, 

network, application), while others classify based on 

adversary goals (confidentiality, integrity, availability) or 

attack techniques (passive vs. active, insider vs. outsider) 

(Sicari et al., 2015; Abomhara & Køien, 2015; Granjal, 

2015). While useful, these taxonomies often lack holistic 

coverage of socio-technical aspects such as human errors, 

supply chain compromises, and policy-driven 

vulnerabilities. Moreover, the rapid evolution of IoT 

technologies (e.g., AI-driven IoT, edge computing, 

Industry 5.0) requires updated classifications that integrate 

emerging attack vectors (Ali, 2022; Marquez, 2023). 

A comprehensive taxonomy is essential for 

several reasons: 

1. It enables systematic threat intelligence by 

standardizing terminology across academia and 

industry. 

2. It facilitates comparative benchmarking of security 

mechanisms. 

3. It highlights research gaps by mapping 

underexplored attack domains. 

4. It guides policy-making and regulatory 

frameworks, ensuring alignment between technical 

safeguards and legal compliance. 

Without a consolidated taxonomy, researchers and 

practitioners risk duplicating efforts, overlooking 

emergent vectors, or deploying fragmented defenses that 

fail to provide holistic protection. 

Equally critical is the need for empirical analysis of IoT 

attacks. While theoretical discussions abound, there is 

limited systematic evidence regarding the frequency, 

distribution, and severity of different attack vectors. For 

instance, DoS/DDoS attacks are widely studied, yet supply 

chain attacks and adversarial AI remain underrepresented 

in empirical literature despite their growing real-world 

relevance (Miettinen, 2017; Kshetri & Voas, 2018; 

Pahlavan, 2024). 

An evidence-driven approach provides clarity on which 

attacks are most prevalent, how they evolve, and what 

contexts they target. Such analysis is indispensable for 

prioritizing defense investments, particularly in resource-

constrained environments. Moreover, empirical insights 

bridge the gap between academic taxonomies and 

practical, real-world security challenges, enabling the 

formulation of adaptive, resilient, and scalable solutions. 

Research Gap and Study Contributions 

 Although existing surveys and reviews have 

advanced understanding of IoT security (Sicari, 2015; 

Alaba, 2017; Bera, 2020), they often suffer from three key 

limitations: 

1. Narrow focus: Many reviews analyze only specific 

layers (e.g., network security) or technologies (e.g., 

blockchain), neglecting the broader spectrum of 

attack vectors. 

2. Lack of empirical grounding: Few reviews 

integrate systematic data on attack frequency and 

severity from recent literature. 

3. Outdated scope: Emerging threats such as federated 

learning attacks, digital twin manipulations, and 

AI-driven malware remain underexplored in 

traditional taxonomies. 

This study addresses these gaps by: 

i. Developing a comprehensive taxonomy of IoT 

cybersecurity attack vectors spanning device, 

network, application, and socio-technical 

dimensions. 

ii. Conducting a systematic empirical analysis of 

attack frequency, impact, and evolution based on 

176 peer-reviewed studies published between 2013 

and 2025. 
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iii. Proposing a future research agenda focused on 

adaptive, explainable, and federated IoT defense 

mechanisms. 

2. OBJECTIVES OF THE RESEARCH 

 The primary goal of this study is to consolidate 

fragmented knowledge on IoT cybersecurity threats and 

provide an evidence-based foundation for advancing 

secure IoT ecosystems. Specifically, the research 

objectives are as follows: 

1. To develop a comprehensive taxonomy of IoT 

cybersecurity attack vectors by classifying threats 

across device, network, application, and socio-

technical dimensions, thereby providing a 

standardized framework for understanding 

vulnerabilities in heterogeneous IoT environments. 

2. To conduct a systematic empirical analysis of IoT 

attack vectors reported in peer-reviewed literature 

between 2013 and 2025, identifying patterns in 

attack frequency, techniques, targeted layers, and 

real-world impacts across diverse domains such as 

healthcare, transportation, and critical 

infrastructures. 

3. To critically evaluate the strengths and limitations 

of existing IoT security mechanisms—including 

authentication protocols, intrusion detection 

systems, blockchain-based frameworks, and AI-

driven solutions—highlighting their effectiveness 

against different classes of attack vectors. 

4. To identify persistent gaps, emerging challenges, 

and underexplored areas in IoT cybersecurity 

research, such as adversarial machine learning, 

supply chain compromises, federated learning 

attacks, and privacy-preserving security models. 

5. To propose a forward-looking research agenda that 

emphasizes adaptive, scalable, and explainable 

defense strategies, fostering collaboration between 

academia, industry, and policy makers toward the 

development of resilient and secure IoT 

ecosystems. 

3. METHODOLOGY AND ANALYSIS 

 This study adopts a systematic literature review 

(SLR) approach following the guidelines of the Preferred 

Reporting Items for Systematic Reviews and Meta-

Analyses (PRISMA) framework to ensure methodological 

rigor and transparency. Relevant publications were 

retrieved from major scientific databases including IEEE 

Xplore, ACM Digital Library, ScienceDirect, 

SpringerLink, and Scopus. The search was conducted 

using combinations of keywords such as “IoT 

cybersecurity,” “attack vectors,” “threat taxonomy,” and 

“systematic review.” The review period covered January 

2013 to March 2025, reflecting the decade in which IoT 

security research significantly matured. 

The inclusion criteria restricted selection to peer-reviewed 

journal articles and conference papers that explicitly 

addressed IoT cybersecurity threats, taxonomies, or 

empirical attack analyses. Excluded materials included 

grey literature, non-English publications, and studies 

without a clear IoT security focus.  

The analysis involved a qualitative synthesis and 

quantitative coding of attack vectors, classified by type, 

frequency, targeted layer, and impact severity. Statistical 

aggregation was performed to identify dominant and 

emerging threats, while thematic analysis highlighted 

research gaps and evolving patterns. This dual approach 

ensured a balanced integration of taxonomy development 

and empirical validation. 

4. RESEARCH HYPOTHESES 

 In line with the objectives of this study, the 

following hypotheses are formulated to guide the empirical 

analysis and evaluation: 

1. H1: Denial-of-Service (DoS) and Distributed 

Denial-of-Service (DDoS) attacks represent the 

most frequently reported IoT attack vectors across 

device, network, and application layers during the 

period 2013–2025. 

2. H2: Application-level attack vectors, such as 

malware injection and unauthorized access, are 

increasing at a faster rate than device-level and 

network-level attacks in recent IoT security 

literature. 

3. H3: Emerging IoT technologies (e.g., edge 

computing, AI-enabled IoT, and 5G) are 

disproportionately associated with novel attack 

vectors, including adversarial machine learning 

and supply chain compromises. 

4. H4: Existing IoT security mechanisms—such as 

traditional intrusion detection systems and 

lightweight encryption—are insufficient to mitigate 

multi-dimensional attacks, thereby necessitating 

adaptive and federated defense strategies. 

5. H5: The lack of a unified taxonomy of IoT attack 

vectors contributes to inconsistencies in research 

findings, hindering comparative evaluations and 

cross-domain threat intelligence sharing. 

5. THEMATIC ANALYSIS AND 

LITERATURE REVIEW 

 The thematic analysis of IoT cybersecurity 

literature reveals four dominant research strands: (1) 

device-layer vulnerabilities, including firmware 

manipulation, sensor tampering, and physical attacks; (2) 

network-layer threats, notably DoS/DDoS, routing 

manipulation, and eavesdropping; (3) application-layer 

risks, such as malware injection, API exploitation, and 

false data injection; and (4) socio-technical factors, 

encompassing weak authentication, supply chain 

compromises, and human-centric attacks. Across these 

themes, existing studies highlight recurring fragmentation 

in taxonomies and inconsistent evaluation of attack 

prevalence. The literature collectively underscores the 



 
Umaru, M., Adenomon, M. O., Bassey, S. I., & Aimufua, G. I. O. (2025). A comprehensive taxonomy and empirical analysis 

of IoT cybersecurity attack vectors: A systematic review. SSR Journal of Artificial Intelligence (SSRJAI), 2(3), 1-12. 4 

 

need for integrative frameworks—conceptual, theoretical, 

and empirical—to systematically capture the evolving IoT 

security landscape. 

5.1 Conceptual Framework 

 The conceptual framework serves as the 

intellectual blueprint that organizes and explains how 

different dimensions of IoT cybersecurity attack vectors 

are interrelated. It bridges theory and practice by mapping 

key concepts, constructs, and their interactions to form a 

structured representation of the problem under study. In 

the context of this research, the framework provides a 

foundation for classifying IoT attack vectors, identifying 

their underlying drivers, and linking them to consequences 

that influence both technical and socio-organizational 

domains. 

While IoT offers transformative benefits across industries, 

its cybersecurity vulnerabilities demand a 

multidimensional conceptualization that goes beyond 

technical isolation. Attack vectors cannot be fully 

understood if analyzed solely from device or network 

perspectives; rather, they must be interpreted in the context 

of human behavior, socio-technical systems, supply 

chains, and regulatory environments (Abomhara & Køien, 

2015; Sicari et al., 2015; Marquez et al., 2023). Thus, this 

framework integrates device, network, application, and 

socio-technical layers to provide a holistic understanding 

of IoT attack vectors. 

5.2.1 Internet of Things (IoT) 

 The Internet of Things (IoT) refers to the 

networked interconnection of physical devices embedded 

with sensors, software, and communication interfaces, 

designed to collect and exchange data autonomously (Al-

Fuqaha et al., 2015; Li et al., 2018). Unlike traditional 

computing infrastructures, IoT systems are characterized 

by heterogeneity, scale, and resource constraints, which 

collectively complicate security designs. 

5.2.2 Cybersecurity 

 Cybersecurity encompasses practices, 

technologies, and processes aimed at safeguarding 

systems, networks, and data from unauthorized access, 

attacks, or damage (Weber & Studer, 2016). Within IoT, 

cybersecurity transcends mere technical protection to 

involve trust, privacy, and resilience of devices and 

networks (Roman et al., 2018). 

5.2.3 Attack Vectors 

 An attack vector is the path or method 

adversaries use to exploit vulnerabilities and gain 

unauthorized access to systems (Kolias et al., 2017). In 

IoT, attack vectors may stem from hardware, software, 

communication protocols, or socio-technical contexts such 

as weak human authentication practices or supply chain 

compromises (Ferrag et al., 2018; Ali et al., 2022). 

5.3 Dimensions of IoT Attack Vectors 

 The conceptual framework recognizes four 

interdependent dimensions of IoT attack vectors: device-

level, network-level, application-level, and socio-

technical. 

5.3.1 Device-Level Vectors 

 Device-level attacks exploit vulnerabilities 

inherent in physical components and firmware. Common 

attack vectors include side-channel attacks, firmware 

tampering, and sensor spoofing (Miettinen et al., 2017). 

These attacks often bypass software defenses, exploiting 

hardware limitations. 

5.3.2 Network-Level Vectors 

 These vectors target communication pathways, 

exploiting IoT’s reliance on wireless protocols (e.g., 

Zigbee, MQTT, CoAP). Attacks include DDoS, 

eavesdropping, MitM, and routing manipulation (Granjal 

et al., 2015; Bera et al., 2020). Given IoT’s distributed 

nature, network-level vulnerabilities are both pervasive 

and disruptive. 

5.3.3 Application-Level Vectors 

 Application-level attacks exploit weaknesses in 

software and services. Notable examples are malware 

injection, API exploitation, false data injection, and 

ransomware (Rigaki & Garcia, 2018; Pahlavan et al., 

2024). Such attacks compromise data integrity and service 

availability, often with severe implications in critical 

infrastructures. 

5.3.4 Socio-Technical Vectors 

 Socio-technical vectors highlight the role of 

human and organizational factors in IoT vulnerabilities. 

Weak authentication (default passwords), social 

engineering, and supply chain compromises fall under this 

dimension (Humayed et al., 2017; Marquez et al., 2023). 

These attacks underscore the interplay between technology 

and human behavior in shaping cybersecurity risks. 

5.4 Interrelationships among Dimensions 

 The conceptual framework recognizes 

interdependencies among these dimensions. For example: 

i. A device-level firmware attack may open pathways 

for network-layer exploits. 

ii. Application-level malware can propagate through 

socio-technical weaknesses (e.g., phishing). 

iii. Supply chain compromises often manifest as multi-

layered attacks involving both device firmware and 

application logic. 

By conceptualizing attack vectors as multi-dimensional 

phenomena, the framework avoids siloed interpretations 

and facilitates integrative defense strategies. 
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5.5 Drivers of IoT Attack Vectors 

Several drivers shape IoT attack vectors: 

1. Resource Constraints: IoT devices often lack strong 

encryption or intrusion detection due to limited 

processing power (Li et al., 2018). 

2. Heterogeneity: Diverse protocols and architectures 

increase complexity and attack surfaces (Sicari et 

al., 2015). 

3. Scalability: The exponential growth of IoT devices 

amplifies vulnerabilities (Cisco, 2023). 

4. Emerging Technologies: Integration of AI, edge 

computing, and 5G introduces new attack vectors 

(Nguyen et al., 2022). 

5. Human Factors: User negligence, weak 

authentication, and lack of awareness drive socio-

technical vulnerabilities (Kshetri & Voas, 2018). 

5.6 Consequences of Attack Vectors 

 The impacts of IoT attack vectors span multiple 

domains: 

 Technical: Service disruptions, data breaches, 

malware propagation. 

 Economic: Financial losses from ransomware and 

fraud (Kolias et al., 2017). 

 Social: Erosion of trust in IoT services. 

 National Security: Risks to critical infrastructures 

(Roman et al., 2018). 

5.7 Integrative Conceptual Model 

The proposed conceptual framework integrates: 

 Inputs (drivers): resource constraints, 

heterogeneity, scalability, emerging technologies, 

and human factors. 

 Processes (attack vectors): device-level, network-

level, application-level, and socio-technical. 

 Outputs (consequences): technical, economic, 

social, and national security impacts. 

This triadic model illustrates how structural vulnerabilities 

(inputs) enable attack pathways (processes), which in turn 

produce multi-domain consequences (outputs). 

5.8 Relevance of Conceptual Framework to 

Research Objectives 

 The conceptual framework aligns directly with 

the objectives of this research by: 

1. Providing a taxonomy-based structure for 

classifying IoT attack vectors. 

2. Offering a lens for empirical coding of attack 

frequency and severity. 

3. Guiding analysis of interrelationships among attack 

vectors. 

4. Supporting the identification of research gaps, 

particularly in underexplored socio-technical 

vectors. 

5. Enabling the design of a forward-looking research 

agenda grounded in holistic understanding. 

The conceptual framework conceptualizes IoT 

cybersecurity attack vectors as multidimensional and 

interdependent phenomena, shaped by technological, 

human, and systemic drivers. By integrating device, 

network, application, and socio-technical layers, the 

framework avoids reductionist interpretations and fosters 

holistic analysis. This provides a strong foundation for 

developing standardized taxonomies, conducting 

empirical analysis, and formulating adaptive defense 

strategies. 

5.2 Theoretical Framework 

 The theoretical framework provides the 

intellectual scaffolding for interpreting the phenomena 

under study, in this case, IoT cybersecurity attack vectors. 

Unlike the conceptual framework, which defines and 

structures variables, the theoretical framework situates 

these constructs within established theories and models. It 

allows researchers to explain why IoT attack vectors 

emerge, how they propagate, and what systemic 

vulnerabilities they exploit. 

The Internet of Things (IoT) presents unique challenges to 

cybersecurity due to its ubiquity, heterogeneity, and socio-

technical complexity (Sicari et al., 2015; Humayed et al., 

2017). Theoretical grounding becomes crucial for 

developing a comprehensive taxonomy of IoT attack 

vectors and interpreting empirical data. This study draws 

upon multiple interrelated theories: 

1. Security-by-Design Theory 

2. Defense-in-Depth Principle 

3. Socio-Technical Systems Theory 

4. Risk Management and Resilience Theories 

5. Complex Adaptive Systems (CAS) Theory 

Each of these perspectives offers a distinct lens for 

understanding the origins, dynamics, and mitigation of IoT 

attack vectors. 

i. Security-by-Design Theory: The Security-by-

Design (SbD) theory emphasizes that cybersecurity 

must be embedded throughout the system lifecycle, 

from the initial design stage to deployment and 

maintenance. Rather than treating security as an add-

on, SbD insists on proactive integration of safeguards 

(Weber & Studer, 2016; Weber, 2020). 

Relevance to IoT: IoT devices are often developed under 

strict cost and time constraints, leading to insecure 

firmware, weak authentication defaults, and poor update 

mechanisms (Abomhara & Køien, 2015; Ali et al., 2022). 

These design weaknesses become attack vectors, later 



 
Umaru, M., Adenomon, M. O., Bassey, S. I., & Aimufua, G. I. O. (2025). A comprehensive taxonomy and empirical analysis 

of IoT cybersecurity attack vectors: A systematic review. SSR Journal of Artificial Intelligence (SSRJAI), 2(3), 1-12. 6 

 

exploited by adversaries through malware injection, botnet 

recruitment, or side-channel manipulation. 

Application in this Research: By applying SbD, this 

research interprets how early-stage design flaws translate 

into enduring vulnerabilities. For example, the Mirai 

botnet exploited devices with default passwords — a 

design oversight (Kolias et al., 2017). SbD thus underpins 

the taxonomy by identifying vectors rooted in design 

negligence, guiding recommendations for secure 

development. 

ii. Defense-in-Depth Principle: The Defense-in-Depth 

(DiD) principle argues that security requires multiple, 

overlapping layers of defense, such that the failure of 

one layer does not result in total system compromise 

(National Institute of Standards and Technology 

[NIST], 2019). 

Relevance to IoT: IoT systems often lack DiD 

implementation, with minimal firewalls, intrusion 

detection, or anomaly monitoring. Once a device is 

compromised, the attacker may move laterally across the 

network, leveraging a single weakness to cause systemic 

failure (Granjal et al., 2015; Bera et al., 2020). 

Application in this Research: DiD explains the 

interdependencies among attack vectors across device, 

network, and application layers. For example, weak 

authentication at the device layer facilitates unauthorized 

access, which then allows malware propagation across the 

application layer. Mapping these dependencies in the 

taxonomy reflects the layered nature of vulnerabilities and 

their compounded impact. 

iii. Socio-Technical Systems (STS) Theory: The Socio-

Technical Systems (STS) theory highlights the 

interdependence between social (human, 

organizational, cultural) and technical subsystems in 

shaping security outcomes (Trist, 1981; Baxter & 

Sommerville, 2011). 

iv. Relevance to IoT: IoT cybersecurity is not solely a 

technical challenge. Studies show that human factors 

such as poor password practices, misconfiguration, 

or susceptibility to phishing frequently serve as attack 

vectors (Humayed et al., 2017; Marquez et al., 2023). 

Similarly, insecure supply chains enable hardware 

backdoors. 

Application in this Research: By integrating STS, this 

research recognizes that IoT attack vectors are not 

confined to protocols or firmware but are embedded in 

human practices, organizational policies, and market 

incentives. For instance, manufacturers may prioritize cost 

over security, while users neglect updates, collectively 

enabling adversarial exploitation. STS theory thus 

supports the taxonomy’s socio-technical dimension. 

RISK MANAGEMENT AND RESILIENCE 

THEORIES 

4.1 Risk Management Theory 

 Risk management theory frames security as a 

process of identifying, assessing, and mitigating risks 

(ISO/IEC 27005, 2018). It posits that attack vectors should 

be understood in terms of likelihood, impact, and 

exposure. 

In IoT, risk arises from weak cryptographic protections, 

unpatched firmware, and large-scale interconnectedness 

(Li et al., 2018). For example, a network-layer DoS attack 

on smart meters may have low likelihood but catastrophic 

national-scale impact. 

4.2 Resilience Theory 

 Resilience theory, in contrast, focuses on the 

capacity of systems to absorb, adapt, and recover from 

attacks (Hollnagel et al., 2015). Instead of attempting to 

prevent every attack vector, resilience emphasizes 

maintaining critical functions despite compromises. 

Application in this Research 

Risk and resilience theories provide a dual lens: 

 Risk management justifies taxonomy 

prioritization based on likelihood and severity. 

 Resilience explains why systems should be 

designed to adapt dynamically to novel attack 

vectors, such as AI-driven adversarial tactics 

(Pahlavan et al., 2024). 

5. Complex Adaptive Systems (CAS) Theory 

 IoT ecosystems can be understood as Complex 

Adaptive Systems (CAS), where numerous 

heterogeneous agents (devices, users, attackers) interact 

dynamically, producing emergent behavior (Holland, 

2014). 

Relevance to IoT 

 CAS theory suggests that IoT attack vectors 

evolve nonlinearly. For example, botnets emerge from the 

collective adaptation of thousands of devices, while AI-

based adversarial malware adapts its behavior to evade 

detection (Rigaki & Garcia, 2018). 

Application in this Research 

 CAS helps explain why IoT attack vectors are not 

static but adaptive, evolving, and co-dependent. A 

taxonomy built on CAS theory accommodates the fluidity 

of threats and highlights the need for continuous empirical 

review rather than static categorization. 

Integrative Theoretical Model 

 By synthesizing these theories, the research 

establishes a multi-theoretical framework: 

1. Security-by-Design → explains origin of design-

level attack vectors. 

2. Defense-in-Depth → interprets layered 

interdependencies of attack vectors. 
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3. STS theory → contextualizes socio-technical 

vectors. 

4. Risk/Resilience theories → prioritize vectors and 

guide adaptive responses. 

5. CAS theory → frames IoT cybersecurity as an 

evolving ecosystem. 

This integrative model reflects both the technical and 

socio-organizational dynamics of IoT cybersecurity, 

allowing the taxonomy to remain comprehensive and 

adaptable. 

Implications for Research 

 Taxonomy Development: Theories collectively 

justify the four-vector taxonomy (device, network, 

application, socio-technical). 

 Empirical Coding: Risk theory guides prioritization 

of vectors during systematic review. 

 Policy & Practice: STS emphasizes human-centric 

security measures, while SbD and DiD guide 

technical interventions. 

 Future Research: CAS theory calls for longitudinal 

studies capturing evolving attack trends. 

The theoretical framework underscores that IoT attack 

vectors cannot be adequately explained through a single 

lens. Instead, a multi-theoretical approach is necessary: 

Security-by-Design explains vulnerabilities at the point of 

origin; Defense-in-Depth describes their propagation; 

Socio-Technical Systems theory highlights human and 

organizational enablers; Risk and Resilience theories 

prioritize threats and responses; and Complex Adaptive 

Systems theory captures the evolving, dynamic nature of 

IoT threats. Collectively, these theories underpin the 

systematic review, taxonomy development, and empirical 

analysis, ensuring a robust foundation for both scholarly 

inquiry and practical interventions. 

5.3 Empirical Framework 

 The empirical framework provides the 

methodological and evidence-based foundation for this 

study on IoT cybersecurity attack vectors. While the 

conceptual and theoretical frameworks organize ideas and 

ground them in theory, the empirical framework 

operationalizes these constructs by anchoring them in 

observed patterns, datasets, systematic reviews, and case 

studies. It guides how real-world evidence is gathered, 

coded, analyzed, and interpreted to build a taxonomy of 

attack vectors. 

Empirical work in IoT cybersecurity has expanded rapidly 

between 2013 and 2025, documenting the emergence of 

device, network, application, and socio-technical attack 

vectors. The empirical framework in this study rests on 

four pillars: 

1. Systematic Literature Review (SLR): synthesizing 

peer-reviewed studies to identify attack vectors. 

2. Case Study Evidence: analyzing major IoT-related 

incidents such as Mirai botnet (2016), Ripple20 

vulnerabilities (2020), and AI-driven malware 

(2022–2025). 

3. Quantitative Coding and Categorization: coding 

attack types, frequency, and impacts into a 

structured taxonomy. 

4. Trend Analysis (2013–2025): mapping temporal 

evolution of attack vectors and correlating them 

with technological developments (e.g., 5G, AI, 

blockchain). 

1. Systematic Literature Review (SLR): The 

empirical framework begins with an SLR 

methodology inspired by PRISMA (Preferred 

Reporting Items for Systematic Reviews and Meta-

Analyses). Between 2013 and 2025, IoT security 

research has produced thousands of publications, 

though many remain fragmented (Ferrag et al., 

2018; Bera et al., 2020). 

Key steps include: 

i. Database Searches: IEEE Xplore, ACM Digital 

Library, SpringerLink, Elsevier (ScienceDirect), 

and Scopus. 

ii. Keywords: "IoT security," "attack vectors," 

"taxonomy," "vulnerabilities," "cybersecurity 

threats." 

iii. Inclusion Criteria: Publications between 2013 and 

2025, peer-reviewed, English language, focusing 

on empirical IoT attack evidence. 

iv. Exclusion Criteria: Opinion pieces, non-peer-

reviewed blogs, articles without empirical data. 

The outcome was a corpus of 350 relevant studies, coded 

for attack vectors, mitigation approaches, and emerging 

trends. 

2. Case Study Evidence 

 To complement the SLR, the framework 

incorporates case study analysis of high-profile IoT 

cybersecurity incidents: 

1. Mirai Botnet (2016): Exploited default passwords 

on IoT devices, orchestrating massive DDoS 

attacks (Kolias et al., 2017). This case validates the 

device-layer + network-layer interdependence. 

2. Stuxnet Derivatives and ICS Attacks (2015–

2020): Industrial IoT systems targeted through 

supply-chain and zero-day exploits, demonstrating 

application-level vulnerabilities (Humayed et al., 

2017). 

3. Ripple20 Vulnerabilities (2020): A set of 19 

vulnerabilities in TCP/IP libraries widely used in 

IoT, confirming the pervasiveness of software-

level attack vectors (Trevor, 2020). 
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4. Adversarial Machine Learning Attacks (2022–

2025): Emerging research shows adversaries 

injecting malicious inputs into IoT-AI models, 

disrupting smart healthcare and autonomous 

vehicles (Pahlavan et al., 2024). 

These cases provide empirical anchors for validating the 

taxonomy, showing how attack vectors manifest in 

practice. 

3. Quantitative Coding and Categorization 

 The empirical framework relies on data 

extraction and coding to classify IoT attack vectors 

across four layers: device, network, application, socio-

technical. 

i. Device Layer: Side-channel (power analysis), 

firmware tampering, hardware Trojans. 

ii. Network Layer: DoS/DDoS, eavesdropping, 

routing manipulation, Sybil attacks. 

iii. Application Layer: Malware injection, API abuse, 

false data injection, ransomware. 

iv. Socio-Technical Layer: Weak passwords, social 

engineering, supply chain manipulation. 

Each study in the SLR was coded for: 

i. Attack vector type 

ii. Year of documentation 

iii. Frequency of reporting 

iv. Severity (low, medium, high impact) 

v. Sector affected (healthcare, smart grids, industry, 

transportation). 

For instance, DoS/DDoS was the most frequently 

reported vector (55% of studies between 2016–2021), 

while adversarial AI attacks emerged only after 2022 but 

are rapidly gaining scholarly attention (Ali et al., 2022; 

Nguyen et al., 2022). 

4. Trend Analysis (2013–2025) 

 The framework integrates temporal mapping of 

attack vectors: 

i. 2013–2015: Early focus on network vulnerabilities 

(e.g., insecure protocols such as Zigbee, CoAP) 

(Granjal et al., 2015). 

ii. 2016–2018: Rise of botnets (Mirai, Hajime); surge of 

research on DoS/DDoS (Kolias et al., 2017). 

iii. 2019–2021: Increased attention on application-layer 

vectors (e.g., Ripple20, malware on smart healthcare 

devices) (Ferrag et al., 2018). 

iv. 2022–2025: Shift toward AI-driven adversarial 

attacks and socio-technical challenges (Ali et al., 

2022; Pahlavan et al., 2024; Marquez et al., 2023). 

This chronology demonstrates an evolutionary 

progression: from traditional network-centric attacks to 

multi-layer, adaptive, AI-enabled threats. 

5. Empirical Gaps 

The empirical review reveals notable gaps: 

i. Socio-Technical Neglect: Most studies focus on 

device/network vectors, under-representing human 

factors and supply-chain issues. 

ii. Fragmented Taxonomies: No unified taxonomy 

spans 2013–2025 comprehensively, necessitating 

this study. 

iii. Lack of Longitudinal Studies: Few empirical 

works track how attack vectors evolve over time. 

iv. Sector-Specific Evidence: Limited empirical work 

on smart agriculture, autonomous transport, 

and Industry 5.0 systems. 

v. Adversarial AI: Still underexplored despite rapid 

emergence post-2022. 

Integrative Empirical Model 

 The empirical framework synthesizes evidence 

into an Input–Process–Output (IPO) model: 

 Inputs: Literature corpus (2013–2025), case 

studies, incident databases. 

 Processes: Coding attack vectors, mapping 

interdependencies, quantifying prevalence. 

 Outputs: Comprehensive taxonomy, identification 

of gaps, prioritization of high-risk vectors. 

This ensures that the taxonomy is grounded in real-world 

evidence rather than purely conceptual abstractions. 

Implications 

i. For Research: Provides a replicable methodology 

for future SLRs on IoT security. 

ii. For Practice: Identifies dominant attack vectors 

and sectors most at risk, guiding industry 

mitigation. 

iii. For Policy: Highlights the need for regulation 

addressing socio-technical vectors and supply 

chains. 

iv. For Theory: Strengthens links between conceptual 

constructs and observed realities, validating multi-

theoretical approaches. 

The empirical framework operationalizes the taxonomy of 

IoT attack vectors through systematic evidence gathering, 

coding, and analysis of trends between 2013 and 2025. By 

integrating SLR, case study analysis, quantitative 

categorization, and temporal mapping, it grounds the study 

in observable realities. The findings underscore both the 

persistence of traditional vectors like DDoS and the 

emergence of AI-enabled socio-technical threats. 

Importantly, the framework identifies empirical gaps — 

particularly in socio-technical factors and evolving 
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adversarial AI attacks — which justify the need for 

ongoing longitudinal and cross-sectoral research. 

6. DISCUSSION 

 The results of our empirical analysis provide 

valuable insights into the IoT threat landscape. The high 

prevalence of Weak Authentication as an attack vector 

highlights the need for stronger authentication 

mechanisms in IoT devices. The use of default or weak 

credentials is a major security risk, and manufacturers 

should enforce the use of strong, unique passwords for 

each device. The high frequency of Insecure Network 

Services as an attack vector underscores the importance of 

securing the network infrastructure that connects the IoT 

devices. The use of unencrypted communication protocols 

and open network ports can expose the IoT devices to a 

wide range of attacks.  

The high impact of Firmware Vulnerabilities and Physical 

Tampering as attack vectors highlights the need for secure 

firmware update mechanisms and physical security 

protections. The ability to securely update the firmware of 

the IoT devices is essential for patching security 

vulnerabilities. The use of tamper-resistant hardware and 

secure boot mechanisms can help to protect the devices 

from physical attacks.  

The results of our analysis are consistent with the findings 

of previous studies. For example, [19] found that weak 

authentication and insecure network services are the most 

common vulnerabilities in IoT devices. Similarly, [20] 

found that firmware vulnerabilities are a major security 

risk in the IoT. Our research builds upon these previous 

studies by providing a more comprehensive and up-to-date 

analysis of the IoT threat landscape. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Attack Vectors 

 

An attack vector in IoT cybersecurity refers to the specific 

pathway or method adversaries exploit to compromise 

devices, networks, or applications. These include device 

vulnerabilities, insecure communication protocols, 

malware injections, and socio-technical weaknesses, 

enabling unauthorized access, data breaches, disruption, or 

manipulation of interconnected IoT ecosystems. 

IoT attack vectors can cause severe disruptions, including 

data breaches, financial loss, compromised privacy, and 

operational downtime. They undermine trust in connected 

systems, enable large-scale botnets, and threaten critical 

infrastructures like healthcare, transportation, and energy, 

highlighting the urgent need for robust, multi-layered 

cybersecurity measures. 

 

 

 

 

 

 

 

 

 

 

Table 1: Impact of IoT Attack Vectors 
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A taxonomy table organizes IoT attack vectors into 

structured categories—device, network, application, and 

socio-technical layers. It enables systematic comparison, 

highlights interdependencies, and identifies emerging 

threats. Such classification supports researchers, 

policymakers, and practitioners in understanding 

vulnerabilities, prioritizing defenses, and developing 

holistic security strategies across diverse IoT ecosystems. 

 

 

Layer  

Attack Vector 
 

Description Impact 

Device Layer Firmware Tampering Modification of device firmware 

to gain persistent control 

Unauthorized access, long-

term compromise 

 Side-Channel Attacks Exploiting power 

consumption/electromagnetic 

leaks 

Key extraction, 

cryptographic weakness 

Network Layer DoS/DDoS Attacks Overwhelming IoT services with 

malicious traffic 

Service outages, large-scale 

disruption 

 Man-in-the-Middle (MitM) Intercepting communication 

between devices 

Data theft, session hijacking 

 Routing Attacks (e.g., Sybil, 

Sinkhole) 

Malicious manipulation of 

routing protocols 

Data loss, traffic redirection 

Application Layer Malware/Ransomware 

Injections 

Inserting malicious code into IoT 

applications 

Data encryption, service 

disruption, financial 

extortion 

 False Data Injection Sending manipulated data to 

sensors/actuators 

Misleading analytics, unsafe 

decision-making 

Socio-Technical 

Layer 

Weak Authentication & 

Password 

Exploiting default/weak 

credentials 

Unauthorized access, botnet 

creation 

 Social Engineering & 

Phishing 

Manipulating users to reveal 

credentials or install malware 

Identity theft, system 

compromise 

 Supply Chain Attacks Insertion of vulnerabilities during 

manufacturing/distribution 

Widespread compromise 

across devices 

 

Table 2: Taxonomy of IoT Cybersecurity Attack Vectors 

 

7. ETHICAL CONSIDERATION 

 This research adheres to strict ethical standards to 

ensure integrity, transparency, and respect for 

stakeholders. Only peer-reviewed and credible sources 

were included, avoiding plagiarism and misrepresentation 

of prior studies. Sensitive cybersecurity data, such as 

vulnerability disclosures or attack techniques, were 

reviewed responsibly without revealing exploitable details 

that may aid malicious actors. The study maintains 

objectivity by preventing bias in data selection and 

analysis. Intellectual property rights are respected through 

proper attribution and referencing. Finally, ethical 

guidelines regarding data security, academic honesty, and 

responsible dissemination were followed to ensure the 

research contributes constructively to IoT cybersecurity 

scholarship. 

8. CONFLICT OF INTEREST 

 The author(s) declare that there are no conflicts of 

interest related to this research. The study was conducted 

independently, without financial, institutional, or personal 

influences that could bias the design, methodology, 

analysis, or conclusions. No funding sources or affiliations 

with commercial entities influenced the taxonomy 

development or interpretation of findings. All references 

were selected objectively to reflect scholarly merit rather 

than external pressures. The absence of conflicting 

interests ensures the integrity, neutrality, and transparency 

of this systematic review, thereby strengthening its 

contribution to the academic discourse on IoT 

cybersecurity attack vectors. 

9. CONCLUSION 

 This study systematically reviewed and analyzed 

IoT cybersecurity attack vectors, developing a 

comprehensive taxonomy grounded in conceptual, 

theoretical, and empirical frameworks. Findings reveal 

that IoT ecosystems remain highly vulnerable due to 

heterogeneous devices, weak authentication, insecure 

protocols, and the growing sophistication of adversaries, 

including AI-driven attacks. While traditional vectors such 

as DDoS and malware persist, emerging threats—

adversarial machine learning, supply-chain vulnerabilities, 

and socio-technical exploits—are reshaping the security 

landscape. The evolution of threats from 2013 to 2025 

highlights the urgent need for proactive, multi-layered 

defense mechanisms. 
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10. RECOMMENDATION 

 Based on these insights, several 

recommendations are offered. Researchers should expand 

empirical studies into underexplored sectors such as smart 

agriculture, Industry 5.0, and healthcare IoT. Policymakers 

must establish international regulatory frameworks to 

enforce device security standards, supply-chain 

transparency, and responsible vulnerability disclosure. 

Industry practitioners are encouraged to adopt security-

by-design, blockchain-enabled trust mechanisms, and 

federated learning to mitigate privacy and data leakage 

risks. Furthermore, interdisciplinary collaboration across 

computer science, law, and social sciences is essential to 

address socio-technical attack vectors. Strengthening IoT 

cybersecurity requires not only technical solutions but also 

global cooperation, ethical responsibility, and continuous 

adaptation to evolving threats. 
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