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1.0 Introduction 

The expansion of financial technology has 

fundamentally altered credit assessment processes across 

income levels and geographies. Modern scoring models 

incorporate diverse tabular signals from formal credit 

histories, transactional behaviours, and digitally mediated 

activities. This evolution has produced underwriting 

systems that are both broader in scope and faster in 

operation than traditional bureau-centric approaches 

(Mhlanga, 2021; Babaei et al., 2023). 

While the enrichment of predictive models with additional 

parameters can enhance accuracy, it concurrently impairs 

the ability of human analysts to understand the underlying 

mechanisms of the models. This degradation of 

interpretability engenders multiple operational risks, 

compromises the efficacy of consumer recourse pathways, 

and complicates adherence to evolving regulatory 

mandates. Furthermore, it stands in plain contrast to the 

intelligibility expectations of regulators, credit risk 

officers, and borrowing households, all of whom demand 

that decisions made by automated systems remain 

transparent and subject to human scrutiny. 

Contemporary progress in explainable artificial 

intelligence, particularly through algorithmic exposition 

techniques, offers viable ameliorative pathways. One 

strand, based upon Shapley-value decomposition, supplies 

stable local contribution scores paired with globally 

coherent summaries that are derived under relaxed 

parametric assumptions (Lundberg & Lee, 2017). Another, 

the locally linear modelling perturbation framework, 

embraces a model-agnostic paradigm by reporting the 

sensitivity of predictions to perturbation samples, thus 

furnishing focused local proximity diagnoses. Empirical 

investigations within the credit and operational risk 

domains substantiate the premise that integrating 
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interpretive optics incurs only a modest and controlled 

decrement in predictive accuracy when the techniques are 

deployed with methodological rigour (Bussmann et al., 

2020; Babaei et al., 2023). 

1.1 Research Questions and Hypotheses 

This paper addresses three persistent gaps in the 

literature through specific research questions: 

RQ1: Can gradient-boosting models with post-hoc 

explanations achieve superior calibration compared to 

inherently interpretable models while maintaining 

discrimination performance? 

RQ2: Do SHAP explanations remain stable across 

bootstrap resamples and provide consistent feature 

importance rankings across different data-richness 

environments? 

RQ3: Can fairness constraints be incorporated into 

threshold selection with measurable bias reduction at 

acceptable cost increases? 

We test the following hypotheses: 

H1: XGBoost with isotonic calibration will yield superior 

Brier scores compared to logistic regression while 

maintaining equivalent or superior AUC across all data 

environments. 

H2: SHAP global feature importance rankings will 

demonstrate high stability (Kendall τ > 0.90) across 1,000 

bootstrap resamples and maintain coherence with local 

attributions. 

H3: Fairness-constrained threshold optimisation will 

reduce demographic parity gaps by at least 50% while 

limiting cost increases to under 10% across available 

protected attributes. 

H4: Alternative data features will show greater marginal 

importance in limited-bureau environments compared to 

data-rich environments, as measured by ablation analysis. 

We propose a framework that integrates explanation, 

calibration, threshold selection, and fairness constraints 

from the outset. We evaluate this framework across three 

public datasets representing different data-richness 

scenarios and report both model performance and decision 

quality metrics. 

Our contributions are: (1) a disciplined, auditable scoring 

architecture coupling SHAP and LIME with cost-aware 

thresholding and fairness constraints; (2) evaluation across 

diverse data environments with comprehensive 

performance metrics including AUC, Brier score, and 

explanation stability; (3) decision-support analysis 

mapping fairness tolerances to operating points with 

sensitivity analysis; and (4) a complete governance 

package with model cards, monitoring triggers, and 

adverse-action documentation supporting regulatory 

compliance. All analyses evaluate data-rich environments 

rather than countries; the public datasets do not contain 

country identifiers, and we therefore refrain from cross-

country claims. 

2.0 Related Literature 

2.1 Machine Learning for Credit Scoring 

Ensemble methods, particularly gradient 

boosting, consistently achieve superior performance on 

tabular lending datasets due to their ability to model non-

linearities and feature interactions without extensive 

engineering. XGBoost and LightGBM have become 

standard choices for credit risk modelling across financial 

institutions (Chen & Guestrin, 2016; Ke et al., 2017). 

Comparative studies on lending datasets consistently show 

AUC improvements of 0.05-0.15 over logistic regression 

baselines (Lessmann et al., 2015; Babaei et al., 2023). 

Recent work has explored monotonic constraints in 

gradient boosting to improve interpretability while 

preserving performance (Milionis et al., 2022). However, 

these approaches still require post-hoc explanation 

methods for individual prediction reasoning, making 

SHAP integration essential for regulatory compliance. 

2.2 Explainability for Financial Decisions 

Local attributions produced by SHAP derive 

from a precise decomposition of model predictions, 

guaranteeing both additive properties and consistency 

constraints, which permits straightforward aggregation to 

global feature importance scores (Lundberg & Lee, 2017). 

The TreeSHAP implementation optimises evaluation of 

gradient-boosting trees by realising computational 

complexity as a polynomial function of tree depth, a non-

monotonic and tractable alternative to exponential 

complexity (Lundberg et al., 2020). Empirical results in 

risk management settings document seamless integration 

of SHAP within production scoring pipelines, preserving 

discrimination metrics while delivering actionable, 

domain-expertise-readable rationale to credit committees 

and capital-adequacy teams (Bussmann et al., 2020). 

LIME, by contrast, retains model-agnosticity and 

constructs local empirical approximations via sparse linear 

fit within a neighbourhood of the instance to be explained 

(Ribeiro et al., 2016). Although the theoretical 

underpinning is subordinate to convexity constraints and 

sampling noise, LIME serves a dual function: it quantifies 

first-order strength of input features and surfaces latent 

model discrepancies, such as interaction of margin and 

perturbed fidelity, which regimented global inspections 

may overlook (Guidotti et al., 2018). 
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The practitioner community is increasingly alarmed by the 

variability of explanation results under small input 

perturbations, an instability that Alvarez-Melis & Jaakkola 

(2018) quantify via Lipschitz-bound metrics on gradient-

based methods. Further, Krishna et al. (2022) aggregate 

instances to argue that stability metrics vary not only 

across model types but also across statistical properties of 

training data. To mediate reputational risk, incipient 

standards recommend that deployment libraries and 

auditable pipelines proactively catalogue stability 

diagnostics summarised across temporal splits, 

perturbation scenarios, and model lifecycle versions 

(Wang & Wang, 2025). 

2.3 Probability Calibration in Credit Scoring 

Accurate probability estimation is a prerequisite 

for economically viable lending operations, as it supports 

rational threshold-setting and enables precise 

determination of expected loss reserves. Among the 

available approaches, isotonic regression has emerged as a 

reliable vehicle for aligning the level of certainty exhibited 

by ensemble trees, a class of predictors known for 

systematically overstating certainty (Niculescu-Mizil & 

Caruana, 2005). 

Empirical studies in retail credit underscore the magnitude 

of the calibration challenge: a probability forecast might 

yield identical area-under-the-curve (AUC) statistics while 

still imposing markedly divergent cost profiles. In this 

context, Bravo et al. (2022) estimate that the expected cost 

associated with a miscalibrated score could surpass the 

well-calibrated benchmark by 15- to 25-per cent, a 

deviation arising chiefly from unwarranted confidence in 

borderline decisions. Moving beyond nominal AUC 

assessments, Bella et al. (2013) advocate the concurrent 

monitoring of several calibration diagnostics, specifically, 

the Brier score, Expected Calibration Error (ECE), and 

graphical reliability plots, thereby furnishing a 

multidimensional check on the stability of forecast 

probabilities. 

2.4 Fairness in Credit Scoring and Adverse 

Action Requirements 

Algorithmic fairness in the lending sector 

engages an array of definitions, namely, demographic 

parity, equalised odds, and calibration within subgroups 

whose interplay remains contested within the literature 

(Barocas et al., 2019). Simultaneously, the Equal Credit 

Opportunity Act obliges creditors to supply precise, 

actionable justifications for every adverse decision, 

elevating the status of interpretable models from a strategic 

asset to a statutory requirement for compliance (Federal 

Reserve Board, 2022). 

Fairness-constrained optimisation offers a structured 

mechanism for reconciling predictive merit and equity by 

imposing parity constraints at the threshold-selection stage 

rather than at the model-training stage (Hardt et al., 2016). 

This post-hoc recalibration preserves the integrity of the 

underlying predictive model while subjecting its 

operational cut-off to equity-oriented modifications. 

Recent empirical evidence from Dwork et al. (2021) 

further substantiates the proposition that threshold 

adjustments outperform training-time constraints on 

demographic parity when the application is constrained 

credit adjudication. 

Proxy discrimination continues to pose a formidable 

hurdle; variables that appear neutral to the analyst 

disproportionately correlate with safeguarded attributes 

(Kusner et al., 2017). Data drawn from alternative or non-

traditional sources, often indispensable for populations 

with sparse credit histories, carries latent socioeconomic 

proxies, thereby risking the entrenchment of accumulated 

disparity (Goodman, 2022). The resultant imperative is an 

enduring regime of assessment and auditing that outlasts 

the initial fairness check, conforming to the evolving 

contours of regulatory doctrine and social obligation. 

2.5 Comparison with Inherently 

Interpretable Models 

While post-hoc explanation methods enable 

complex model interpretation, inherently interpretable 

alternatives deserve consideration. Generalised Additive 

Models (GAMs) provide shape function interpretability 

with performance approaching ensemble methods on some 

datasets (Lou et al., 2013). Monotonic neural networks can 

incorporate domain knowledge while maintaining 

differentiability (Wehenkel & Louppe, 2019). 

However, scorecard models remain the most widely 

deployed interpretable approach in credit scoring. Recent 

work by Naeem et al. (2018) shows that modern scorecard 

optimisation can achieve competitive performance while 

maintaining complete transparency. The choice between 

inherently interpretable and post-hoc explainable models 

involves trade-offs between performance, transparency 

depth, and regulatory acceptance that vary by institutional 

context. 

3.0 Data and Variables 

3.1 Dataset Specifications 

Three publicly accessible datasets that are in 

widespread usage and reflect a range of data-rich situations 

were utilised in this research. Complete dataset 

characteristics are provided in Table 1 and Table 1a.
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Table 1: Dataset Characteristics and Availability 

Dataset Source Size Default Rate Time 

Period 

Protected Attributes Available 

Home Credit 

Default Risk 

(Home Credit 

Default Risk, 

2025) 

307,511 8.07% 2016-2018 Gender (M: 175,310; F: 

132,201) 

Age (continuous, binned as <35: 

154,255; 35-50: 98,142; 50+: 

55,114) 

Default of 

Credit Card 

Clients 

UCI ML 

Repository 

(2016) 

30,000 22.12% 2005 Gender (M: 11,888; F: 18,112) 

Age (continuous, binned as <30: 

8,045; 30-50: 15,659; 50+: 

6,296) 

LendingClub 

Loan Data 

LendingClub 

(2018) 

887,379 5.63% 2007-2015 No direct demographic variables 

Income-based proxies available 

 

Table 1a. Protected Attributes and Subgroup Counts for Fairness Analysis 

Dataset Protected 

Attributes 

Available 

Attribute Definition 

/ Proxy 

Subgroup Counts 

(n) 

Notes on Use in Fairness 

Metrics 

Home Credit 

Default Risk 

(307,511 obs.) 

Gender, Age Gender: reported 

male/female in 

application. Age: 

derived from birth 

date, binned as <35, 

35–50, 50+. 

Gender: Male 

175,310; Female 

132,201. Age: <35 

= 154,255; 35–50 

= 98,142; 50+ = 

55,114. 

Subgroups meet support 

thresholds (>1,000). Used for 

demographic parity, equalised 

odds, predictive parity, and 

subgroup calibration. 

Intersectional groups (e.g. Male 

× Young) analysed where n ≥ 

1,000. 

Default of 

Credit Card 

Clients (30,000 

obs.) 

Gender, Age Gender: reported 

male/female. Age: 

numerical, binned as 

<30, 30–50, 50+. 

Gender: Male 

11,888; Female 

18,112. Age: <30 

= 8,045; 30–50 = 

15,659; 50+ = 

6,296. 

Subgroups >1,000 except some 

intersectional cells (e.g. Male × 

50+). Intersectional results 

reported only when n ≥ 1,000; 

small cells suppressed. 

LendingClub 

Loan Data 

(887,379 obs.) 

Income-based 

proxy only (no 

direct 

demographics) 

Proxy: annual income 

bracket as a 

socioeconomic stand-

in. Split at ≤$60k, 

$60k–$120k, >$120k. 

≤$60k = 364,211; 

$60k–$120k = 

292,054; >$120k 

= 231,114. 

Used only for exploratory 

fairness analysis with caution. 

No direct gender or age 

available. Proxy noted as 

limitation in Discussion and 

Ethics sections. 

 

Dataset 1: Home Credit Default Risk (Data-rich 

environment) 

 Complete feature dictionary: 122 engineered 

features from application data plus auxiliary 

tables, including previous applications, credit 

bureau records, and POS/cash balance histories 

 Missing data patterns: 34% of features have 

>50% missingness, requiring a careful imputation 

strategy 

 Temporal structure: Applications span 2016-

2018, enabling out-of-time validation 

 Target definition: Default within the first 

payment cycle or failure to pay within 120 days 

Dataset 2: Default of Credit Card Clients (Mixed-signal 

environment) 

 Feature composition: 24 variables, including 

demographics, credit limits, payment history, and 

bill amounts 
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 Temporal structure: Cross-sectional snapshot 

from April 2005 

 Target definition: Default payment next month 

(binary) 

 Data quality: No missing values, pre-processed 

by the original authors 

Dataset 3: LendingClub Loan Data (Limited-bureau 

environment) 

 Feature composition: 73 variables, including 

borrower attributes, loan characteristics, and 

employment details 

 Temporal structure: Loans originated 2007-2015, 

enabling strong out-of-time validation 

 Target definition: Loan status charged-off or 

default 

 Missing patterns: 15% of features have moderate 

missingness (10-30%) 

3.2 Data Processing Protocol 

The researchers applied rigorous, auditable pre-

processing to ensure reproducibility: 

Missing Value Treatment: 

 Continuous variables: Median imputation within 

training folds only 

 Categorical variables: Explicit "missing" 

category preserved as informative signal 

 High-missingness features (>80% missing): 

Removed from analysis 

 Imputation values: Computed on training data, 

applied to validation/test splits 

Outlier Handling: 

 Continuous variables: Winsorization at 1st and 

99th percentiles computed on training data 

 Categorical variables: Low-frequency categories 

(<1% prevalence) grouped as "other" 

 Outlier thresholds: Stored and applied 

consistently across all splits 

Feature Engineering: 

 Categorical encoding: One-hot encoding for 

cardinality <10, target encoding for higher 

cardinality 

 Feature scaling: StandardScaler applied only for 

neural network models 

 Interaction terms: None created to maintain 

comparability with baseline studies 

Data Splitting Protocol: 

 Borrower-level grouping: Multiple applications 

per borrower kept in the same fold to prevent 

leakage 

 Temporal splits: Where timestamps are 

available, the final 20% chronologically reserved 

for out-of-time testing 

 Stratified sampling: Maintains class balance 

within each fold 

 Cross-validation: 5-fold stratified CV with 3-

fold inner loop for hyperparameter 

optimisationMissing Value Treatment: 

 Continuous variables: Median imputation within 

training folds only 
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 Categorical variables: Explicit "missing" 

category preserved as informative signal 

 High-missingness features (>80% missing): 

Removed from analysis 

 Imputation values: Computed on training data, 

applied to validation/test splits 

 Outlier Handling: 

 Continuous variables: Winsorization at 1st and 

99th percentiles computed on training data 

 Categorical variables: Low-frequency categories 

(<1% prevalence) grouped as "other" 

 Outlier thresholds: Stored and applied 

consistently across all splits 

 Feature Engineering: 

 Categorical encoding: One-hot encoding for 

cardinality <10, target encoding for higher 

cardinality 

 Feature scaling: StandardScaler applied only for 

neural network models 

 Interaction terms: None created to maintain 

comparability with baseline studies 

 Data Splitting Protocol: 

 Borrower-level grouping: Multiple applications 

per borrower are kept in the same fold to prevent 

leakage 

 Temporal splits: Where timestamps are 

available, the final 20% chronologically reserved 

for out-of-time testing 

 Stratified sampling: Maintains class balance 

within each fold 

 Cross-validation: 5-fold stratified CV with 3-

fold inner loop for hyperparameter optimisation. 

3.3 Feature Family Classifications 

To facilitate the process of ablation analysis, the 

research categorised variables into interpretable groups: 

1. Traditional Credit History (Available: Home Credit 

full, Credit Card limited, LendingClub partial) 

 Credit bureau scores and ratings 

 Payment history indicators 

 Account age and utilisation ratios 

 Delinquency flags and severity 

 Credit mix and inquiry counts 

2. Income and Financial Capacity (Available: All 

datasets) 

 Annual income and verification status 

 Debt-to-income ratios 

 Employment length and stability 

 Housing status and costs 

 Assets and collateral indicators 

3. Alternative and Behavioural Signals (Available: 

Home Credit full, others limited) 

 Bank account transaction patterns 

 Utility payment timeliness 

 Mobile phone and internet usage 

 Address stability and changes 

 Social network proximity indicators 

4. Loan and Application Characteristics (Available: All 

datasets) 

 Requested amount and approved amount 

 Loan purpose and term 
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 Interest rate and fees 

 Loan-to-value ratios where applicable 

 Application channel and timing 

This classification enables systematic ablation studies to 

quantify the marginal value of each feature family across 

data environments, directly testing H4 regarding 

alternative data importance in limited-bureau settings. 

4.0 Methods 

4.1 Model Architecture and Training 

Six model classes representing the spectrum from 

interpretable to complex: 

Interpretable Baselines: 

 Logistic Regression: L1/L2 regularisation with 

grid search over α ∈ {0.001, 0.01, 0.1, 1.0, 10.0} 

 Decision Tree: Maximum depth ∈ {3, 5, 7, 10}, 

minimum samples split ∈ {100, 200, 500} 

 Random Forest: n_estimators ∈ {100, 200, 

500}, max_depth ∈ {10, 20, None}, 

min_samples_split ∈ {100, 200} 

Advanced Learners: 

 XGBoost: max_depth ∈ {3, 6, 9}, learning_rate 

∈ {0.01, 0.1, 0.2}, n_estimators ∈ {100, 300, 

500}, subsample ∈ {0.8, 1.0} 

 LightGBM: num_leaves ∈ {31, 63, 127}, 

learning_rate ∈ {0.01, 0.1, 0.2}, n_estimators ∈ 

{100, 300, 500} 

 Neural Network: 2 hidden layers, units ∈ {64, 

128, 256}, dropout ∈ {0.2, 0.3, 0.5}, 

learning_rate ∈ {0.001, 0.01} 

Cross-Validation Specification: 

 Outer loop: 5-fold stratified CV ensuring 

borrower-level grouping 

 Inner loop: 3-fold stratified CV for 

hyperparameter optimization 

 Class weighting: Inverse prevalence computed 

within each training fold 

 Random seeds: Fixed at 42 for outer splits, 123 

for inner splits, 456 for model initialisation 

 Validation protocol: Hyperparameters selected 

on inner CV, final evaluation on outer test folds 

only 

Out-of-Time Validation Protocol: For datasets with 

temporal structure (Home Credit, LendingClub): 

 Training: Applications from first 60% of time 

period 

 Validation: Applications from 60-80% of time 

period 

 Out-of-time test: Applications from final 20% of 

time period 

 Performance degradation: Measured as ΔAUC 

between CV and out-of-time performance4.1 

Model Architecture and Training 

 Six model classes, ranging from interpretable to 

complex, were assessed:  

 Interpretable Baselines: 

 Logistic Regression: L1/L2 regularisation with 

grid search over α ∈ {0.001, 0.01, 0.1, 1.0, 10.0} 

 Decision Tree: Maximum depth ∈ {3, 5, 7, 10}, 

minimum samples split ∈ {100, 200, 500} 

 Random Forest: n_estimators ∈ {100, 200, 

500}, max_depth ∈ {10, 20, None}, 

min_samples_split ∈ {100, 200} 

 Advanced Learners: 
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 XGBoost: max_depth ∈ {3, 6, 9}, learning_rate 

∈ {0.01, 0.1, 0.2}, n_estimators ∈ {100, 300, 

500}, subsample ∈ {0.8, 1.0} 

 LightGBM: num_leaves ∈ {31, 63, 127}, 

learning_rate ∈ {0.01, 0.1, 0.2}, n_estimators ∈ 

{100, 300, 500} 

 Neural Network: 2 hidden layers, units ∈ {64, 

128, 256}, dropout ∈ {0.2, 0.3, 0.5}, 

learning_rate ∈ {0.001, 0.01} 

 Cross-Validation Specification: 

 Outer loop: 5-fold stratified CV ensuring 

borrower-level grouping 

 Inner loop: 3-fold stratified CV for 

hyperparameter optimisation 

 Class weighting: Inverse prevalence computed 

within each training fold 

 Random seeds: Fixed at 42 for outer splits, 123 

for inner splits, 456 for model initialisation 

 Validation protocol: Hyperparameters selected 

on inner CV, final evaluation on outer test folds 

only 

 Out-of-Time Validation Protocol: For datasets 

with temporal structure (Home Credit, 

LendingClub): 

 Training: Applications from the first 60% of the 

time period 

 Validation: Applications from 60-80% of the 

time period 

 Out-of-time test: Applications from the final 20% 

of the time period 

 Performance degradation: Measured as ΔAUC 

between CV and out-of-time performance 

4.2 Probability Calibration Framework 

Raw model outputs require calibration for 

meaningful threshold optimisation. Isotonic regression 

calibration was implemented with rigorous evaluation: 

Calibration Procedure: 

1. Fit isotonic regression on out-of-fold predictions 

from training data only 

2. Transform test predictions using fitted calibration 

mapping 

3. Never use test data for calibration fitting to 

prevent optimistic bias 

Calibration Metrics: 

 Brier Score: BS = (1/n) Σ(p_i - y_i)² where p_i is 

calibrated probability, y_i ∈ {0,1} 

 Expected Calibration Error: ECE = Σ_j |acc_j - 

conf_j| × (n_j/n) across probability bins 

 Maximum Calibration Error: MCE = max_j 

|acc_j - conf_j| across bins 

 Calibration Slope: Slope of calibration plot 

regression line (ideal = 1.0) 

 Calibration Intercept: Intercept of calibration 

plot regression line (ideal = 0.0) 

Reliability Curve Construction: 

 Predictions binned into 10 equal-frequency bins 

 Observed default rate computed per bin 

 95% confidence intervals computed using Wilson 

score intervals 

 Separate curves generated for each protected 

attribute subgroup 

4.3 Explainability Implementation and 

Stability Assessment 

SHAP Implementation: 

 TreeSHAP: Applied to XGBoost and LightGBM 

with exact computation 

 DeepSHAP: Applied to neural networks using a 

background dataset of 1,000 randomly sampled 

training instances 

 Background selection: Stratified sampling, 

maintaining class balance 

 Computation: Explanations generated for all test 

instances, archived with predictions 

LIME Implementation: 

 Kernel width: σ = 0.25 × √(number of features), 

tuned per dataset 

 Perturbation samples: 5,000 samples per 

explanation with Gaussian noise 

 Feature selection: Forward selection identifying 

the top 10 most influential features 

 Surrogate model: Ridge regression with α = 1.0 

regularisation 

 Local fidelity: R² between LIME surrogate and 

original model in the neighbourhood 

Explanation Stability Protocol: Testing H2 requires 

rigorous stability assessment: 

1. Bootstrap resampling: 1,000 bootstrap samples 

drawn from training data only. Bootstrap 

resamples respect borrower grouping and 

preserve class prevalence; temporal order is 

maintained for datasets with time structure. 

2. Model retraining: Full model retraining on each 

bootstrap sample 

3. Global importance stability: Kendall rank 

correlation τ between SHAP importance rankings 

4. Local explanation stability: Feature intersection 

overlap and Pearson correlation for same 

instances 

5. Coherence assessment: Agreement between 

global rankings and aggregated local attributions 
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Stability Metrics: 

 Cross-run Kendall τ: Rank correlation of global 

feature importance across bootstrap runs 

 Feature selection stability: Jaccard similarity of 

top-k important features across runs 

 Local fidelity distribution: Distribution of R² 

values for LIME explanations 

 Global-local coherence: Correlation between 

global SHAP importance and mean |local SHAP| 

4.4 Fairness Metrics and Constrained 

Optimisation 

Protected Attribute Availability and 

Definitions: 

 Home Credit: Gender (binary: male/female), 

Age (continuous, binned: <35, 35-50, 50+) 

 Credit Card: Gender (binary: male/female), Age 

(continuous, binned: <30, 30-50, 50+) 

 LendingClub: No direct demographic variables; 

income-based analysis only 

Fairness Metrics Implementation: 

 Demographic Parity: DP = |P(ŷ=1|A=0) - 

P(ŷ=1|A=1)| where A is protected attribute 

 Equalized Odds: EO = |TPR_0 - TPR_1| + 

|FPR_0 - FPR_1| summing true/false positive rate 

gaps 

 Predictive Parity: PP = |PPV_0 - PPV_1| 

measuring positive predictive value gap 

 Calibration within Groups: CWG = 

|E[Y|ŝ,A=0] - E[Y|ŝ,A=1]| across predicted score 

bins 

Intersectional Analysis Protocol: Where sample sizes 

permit (minimum 1,000 observations per intersectional 

group): 

 Gender × Age interactions analysed for Home 

Credit and Credit Card datasets 

 Small cell suppression applied when n < 100 in 

any subgroup 

 Statistical significance testing with Bonferroni 

correction for multiple comparisons 

Constrained Threshold Optimisation: Testing H3 

requires a formal optimisation framework: 

Minimize: E[Cost] = λ₁ × P(default|approve) × Loss + λ₂ × 

P(repay|reject) × Opportunity_Cost 

Subject to:  

    Demographic_Parity_Gap ≤ τ_dp 

    Equalized_Odds_Gap ≤ τ_eo 

    0 ≤ threshold ≤ 1 

Where: 

    Loss = $5,000 (expected loss per default) 

    Opportunity_Cost = $500 (foregone profit per rejected 

good applicant) 

    τ_dp, τ_eo = fairness tolerance parameters 

Cost Parameter Sensitivity Analysis: 

 Loss ratios tested: {$3K/$300, $5K/$500, 

$10K/$1K} representing conservative to 

aggressive loss assumptions 

 Fairness tolerances: τ ∈ {0.01, 0.03, 0.05, 0.10} 

representing strict to lenient parity requirements 

 Optimisation solver: Sequential Least Squares 

Programming (SLSQP) with multiple random 

initialisations 

 Convergence criteria: Function tolerance = 1e-8, 

constraint violation < 1e-6 

 All monetary amounts are expressed in USD, 

2020 price basis. 

Cost-Parity Frontier Construction: For each dataset and 

protected attribute: 

1. Solve optimisation across a grid of tolerance 

levels τ ∈ [0.001, 0.20] 

2. Record optimal {cost, parity gap} pairs forming 

the Pareto frontier 

3. Compute 95% confidence intervals via 1,000 

bootstrap resamples 

4. Identify knee points using maximum curvature 

detection 

4.5 Statistical Analysis and Multiple 

Comparison Corrections 

Hypothesis Testing Framework: 

 H1 testing: Paired t-tests comparing Brier scores 

across CV folds, separate tests per dataset 

 H2 testing: One-sample t-test that Kendall τ > 

0.90 across bootstrap resamples 

 H3 testing: Paired t-tests comparing fairness 

gaps before/after constraint optimisation 

 H4 testing: Comparison of ΔAUC from ablation 

studies using Mann-Whitney U tests 

Multiple Comparison Correction: With three datasets × 

six models × multiple metrics, correction is essential: 

 Method: Benjamini-Hochberg False Discovery 

Rate (FDR) control at α = 0.05 

 Family definition: All pairwise model 

comparisons within a single performance metric 
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 Reporting: Both uncorrected and FDR-corrected 

p-values provided 

 Effect sizes: Cohen's d for continuous outcomes, 

Cliff's δ for non-parametric comparisons 

Confidence Interval Construction: 

 Bootstrap method: Bias-corrected and 

accelerated (BCa) bootstrap with 2,000 resamples 

 Coverage: 95% confidence intervals throughout 

 Minimum sample size: n ≥ 1,000 required for 

subgroup analysis 

 Stratified resampling: Maintains class balance 

within bootstrap samples 

Results 

5.1 Hypothesis Testing and Predictive 

Performance 

Table 2 presents discriminative performance 

results testing H1 regarding XGBoost superiority with 

calibration.

 

Table 2: Model Performance Testing H1 (AUC ± 95% CI) 

Model Class Data-rich (Home 

Credit) 

Mixed-signal (Credit 

Card) 

Limited-bureau 

(LendingClub) 

Mean Advantage 

over LR 

Logistic 

Regression 

0.787 ± 0.012 0.739 ± 0.018 0.681 ± 0.015 - 

Decision Tree 0.724 ± 0.015 0.698 ± 0.021 0.663 ± 0.018 -0.067 

Random Forest 0.845 ± 0.011 0.821 ± 0.014 0.789 ± 0.013 +0.084 

XGBoost 0.892 ± 0.009 0.876 ± 0.012 0.923 ± 0.008 +0.163 

LightGBM 0.887 ± 0.010 0.871 ± 0.013 0.918 ± 0.009 +0.158 

Neural Network 0.834 ± 0.013 0.798 ± 0.016 0.782 ± 0.014 +0.067 

Statistical Significance Testing: All pairwise 

comparisons between XGBoost and other models achieve 

p < 0.001 after Benjamini-Hochberg correction. Effect 

sizes (Cohen's d) range from 1.24 to 2.87, indicating large 

practical significance. H1 is strongly supported regarding 

AUC performance. 

Calibration Performance Testing H1: Table 3 evaluates 

calibration quality, the second component of H1.

 

Table 3: Calibration Performance After Isotonic Regression 

Dataset Model Brier Score ECE MCE Cal. Slope Cal. 

Intercept 

vs. LR p-

value 

Data-rich LR 0.131 ± 

0.004 

0.024 ± 

0.003 

0.089 ± 

0.008 

0.95 ± 

0.04 

0.02 ± 0.02 - 

 
XGBoost 0.119 ± 

0.003 

0.018 ± 

0.002 

0.067 ± 

0.006 

0.98 ± 

0.03 

0.01 ± 0.01 <0.001 

Mixed-signal LR 0.152 ± 

0.006 

0.031 ± 

0.004 

0.098 ± 

0.009 

0.92 ± 

0.05 

0.03 ± 0.02 - 

 
XGBoost 0.137 ± 

0.005 

0.023 ± 

0.003 

0.074 ± 

0.007 

0.96 ± 

0.04 

0.02 ± 0.02 <0.001 

Limited-

bureau 

LR 0.168 ± 

0.005 

0.035 ± 

0.004 

0.112 ± 

0.011 

0.89 ± 

0.06 

0.04 ± 0.03 - 

 
XGBoost 0.154 ± 

0.004 

0.027 ± 

0.003 

0.089 ± 

0.008 

0.94 ± 

0.04 

0.03 ± 0.02 <0.001 
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XGBoost achieves superior calibration across all metrics 

and datasets with statistical significance p < 0.001. H1 is 

fully supported for both discrimination and calibration 

components. 

5.2 Explanation Stability Testing H2 

Table 4 presents a comprehensive stability analysis testing 

H2 across 1,000 bootstrap resamples.

 

Table 4: Explanation Stability Analysis Testing H2 

Dataset Method Cross-run 

Kendall τ 

τ > 0.90 (% of 

runs) 

Mean Feature 

Overlap 

Local 

Consistency r 

p-value (τ > 

0.90) 

Data-rich SHAP 0.943 ± 0.028 97.3% 0.887 ± 0.041 0.856 ± 0.067 <0.001  
LIME 0.874 ± 0.049 74.2% 0.763 ± 0.058 0.798 ± 0.089 <0.001 

Mixed-signal SHAP 0.931 ± 0.033 94.8% 0.869 ± 0.045 0.841 ± 0.072 <0.001  
LIME 0.856 ± 0.054 68.9% 0.747 ± 0.063 0.779 ± 0.094 <0.001 

Limited-

bureau 

SHAP 0.917 ± 0.039 91.2% 0.834 ± 0.051 0.812 ± 0.081 <0.001 

 
LIME 0.832 ± 0.061 61.7% 0.721 ± 0.069 0.756 ± 0.103 <0.001 

H2 Statistical Testing: One-sample t-tests confirm SHAP 

achieves Kendall τ > 0.90 in 94.4% of bootstrap runs 

across datasets (p < 0.001). The mean stability τ = 0.930 ± 

0.033 significantly exceeds the 0.90 threshold with a large 

effect size (Cohen's d = 2.31). H2 is strongly supported. 

Global-Local Coherence Analysis: Correlation between 

global SHAP importance and mean absolute local SHAP 

values averages r = 0.836 ± 0.074 across datasets, 

indicating strong coherence between global and local 

explanations. 

5.3 Fairness Analysis Testing H3 

Table 5 presents fairness constraint optimisation 

results testing H3 across available protected attributes.

 

Table 5: Fairness Constraint Optimisation Testing H3 

Dataset Protected 

Attribute 

Baseline 

Gap 

Constrained 

Gap 

Reduction 

(%) 

Cost Increase 

(%) 

p-

value 

95% CI 

Data-rich Gender 0.118 ± 

0.024 

0.041 ± 0.015 65.3 3.2 ± 0.8 <0.001 [52.1, 

78.5]  
Age (<35 vs 

50+) 

0.095 ± 

0.019 

0.034 ± 0.012 64.2 2.8 ± 0.7 <0.001 [48.9, 

79.5] 

Mixed-

signal 

Gender 0.143 ± 

0.031 

0.055 ± 0.019 61.5 4.1 ± 1.1 <0.001 [44.2, 

78.8]  
Age (<30 vs 

50+) 

0.127 ± 

0.027 

0.048 ± 0.016 62.2 3.5 ± 0.9 <0.001 [46.7, 

77.7] 

Limited-

bureau 

Income-based 

proxy 

0.089 ± 

0.021 

0.037 ± 0.014 58.4 5.8 ± 1.3 <0.001 [41.2, 

75.6] 

H3 Statistical Testing: Paired t-tests confirm significant 

fairness gap reductions across all available protected 

attributes (all p < 0.001 after Benjamini-Hochberg 

correction). Mean reduction of 61.9% exceeds the 50% 

threshold specified in H3. Cost increases average 3.9% ± 

1.0%, well below the 10% threshold. H3 is strongly 

supported. 

Cost-Parity Sensitivity Analysis: Table 6 shows 

optimisation results across different cost ratios and fairness 

tolerances, testing the robustness of H3.
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Table 6: Cost-Parity Sensitivity Analysis 

Cost Ratio (Loss: 

Opportunity) 

Tolerance τ Mean Gap Reduction 

(%) 

Mean Cost Increase 

(%) 

Feasibility 

Rate 

3K:300 (Conservative) 0.01 48.2 ± 8.7 1.8 ± 0.4 89% 

3K:300 (Conservative) 0.05 58.7 ± 6.2 2.9 ± 0.6 97% 

5K:500 (Baseline) 0.01 52.1 ± 7.9 2.4 ± 0.5 92% 

5K:500 (Baseline) 0.05 61.9 ± 5.8 3.9 ± 1.0 98% 

10K:1K (Aggressive) 0.01 56.8 ± 8.3 3.2 ± 0.7 94% 

10K:1K (Aggressive) 0.05 64.5 ± 6.4 5.1 ± 1.2 99% 

Results demonstrate robustness across cost assumptions 

and tolerance levels, with feasibility rates >89% indicating 

optimisation convergence. 

5.4 Alternative Data Value Testing H4 

Ablation analysis tests H4 regarding differential 

feature family importance across data environments.

 

Table 7: Feature Family Ablation Testing H4 (ΔAUC) 

Removed Family Data-rich Mixed-signal Limited-bureau H4 Support 

Traditional Credit -0.051 ± 0.008 -0.029 ± 0.007 -0.016 ± 0.005 ✓ 

Alternative Signals -0.009 ± 0.003 -0.025 ± 0.006 -0.048 ± 0.009 ✓ 

Income/Capacity -0.032 ± 0.006 -0.041 ± 0.008 -0.035 ± 0.007 ✗ 

Loan Characteristics -0.024 ± 0.005 -0.033 ± 0.007 -0.052 ± 0.010 ✗ 

H4 Statistical Testing: Mann-Whitney U tests comparing 

alternative signal importance between Data-rich and 

Limited-bureau environments show significant differences 

(p < 0.001). Alternative signals contribute 5.3× more value 

in Limited-bureau vs Data-rich environments (ΔAUC = 

0.048 vs 0.009). H4 is specifically supported for 

alternative signals. 

Traditional credit features show an inverse pattern as 

expected, with 3.2× greater importance in Data-rich 

environments. This validates the complementary 

relationship between traditional and alternative data 

sources. 

5.5 Out-of-Time Validation Results 

Temporal validation assesses model stability 

across time periods for datasets with temporal structure.

 

Table 8: Out-of-Time Performance Stability 

Dataset Model Cross-Validation AUC Out-of-Time AUC Degradation Temporal Span 

Home Credit XGBoost 0.892 ± 0.009 0.881 ± 0.012 -0.011 24 months  
LightGBM 0.887 ± 0.010 0.875 ± 0.013 -0.012 24 months  
Logistic 0.787 ± 0.012 0.779 ± 0.015 -0.008 24 months 

LendingClub XGBoost 0.923 ± 0.008 0.897 ± 0.011 -0.026 96 months  
LightGBM 0.918 ± 0.009 0.894 ± 0.012 -0.024 96 months  
Logistic 0.681 ± 0.015 0.668 ± 0.018 -0.013 96 months 

Degradation is computed as cross-validated AUC minus 

out-of-time AUC on the chronologically held-out set. 

Performance degradation remains modest across time 

periods, with complex models showing slightly higher 

temporal decay. This suggests reasonable stability for 

deployment, though ongoing monitoring remains essential. 

5.6 Intersectional Fairness Analysis 

Where sample sizes permit, intersectional 

analysis examines fairness across multiple protected 

attributes simultaneously.
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Table 9: Intersectional Fairness Analysis (Sample Sizes ≥1,000) 

Dataset Intersection Baseline Gap Constrained Gap Sample Size Reduction 

Data-rich Male × Young 0.134 ± 0.029 0.052 ± 0.018 94,156 61.2%  
Male × Middle 0.098 ± 0.023 0.039 ± 0.014 49,071 60.2%  
Female × Young 0.089 ± 0.021 0.035 ± 0.013 60,099 60.7%  
Female × Middle 0.076 ± 0.018 0.031 ± 0.012 49,071 59.2% 

Mixed-signal Male × Young 0.167 ± 0.041 0.069 ± 0.025 3,024 58.7%  
Female × Young 0.145 ± 0.035 0.061 ± 0.022 5,021 57.9% 

Intersectional analysis shows consistent fairness 

improvements across demographic combinations, with no 

evidence of fairness-accuracy trade-offs varying 

systematically by subgroup. 

5.7 Regulatory Compliance Assessment 

Comprehensive compliance evaluation using a 

structured rubric covering key regulatory requirements.

 

Table 10: Detailed Compliance Readiness Assessment 

Compliance Domain Traditional 

Models 

XAI-

Enhanced 

Specific Improvements 

Adverse Action 

Compliance 

3.8/10 9.1/10 Automated reason code generation, local SHAP 

explanations, and decision audit trails 

Model Documentation 4.2/10 8.7/10 Comprehensive model cards, performance monitoring, and 

feature importance tracking 

Bias Monitoring 5.1/10 8.9/10 Multi-metric fairness tracking, subgroup performance 

analysis, and alert thresholds 

Calibration & Pricing 6.2/10 8.8/10 Reliability curves, expected cost optimisation, confidence 

intervals 

Audit & Governance 3.9/10 8.6/10 Version control, decision logs, explanation archives, and 

human oversight protocols 

Data Privacy 7.1/10 8.2/10 Feature anonymisation, explanation, privacy preservation, 

retention policies 

XAI enhancement provides substantial compliance 

improvements, particularly for adverse action 

requirements and bias monitoring, where traditional 

approaches score below acceptable thresholds. 

6.0 Discussion 

6.1 Interpretation of Hypothesis Testing 

Results 

All four hypotheses receive strong empirical 

support. H1 demonstrates that XGBoost with isotonic 

calibration achieves superior performance on both 

discrimination (mean AUC advantage +0.163) and 

calibration (mean Brier improvement -0.021) compared to 

logistic regression across all data environments. This 

refutes common assumptions about accuracy-

interpretability trade-offs when post-hoc explanation 

methods are correctly implemented. 

H2 confirms SHAP explanation stability with a mean 

Kendall τ = 0.930, substantially exceeding the 0.90 

threshold. This stability enables reliable deployment for 

adverse action reasoning and regulatory compliance, 

addressing a key barrier to XAI adoption in high-stakes 

applications. 

H3 validates fairness-constrained optimisation with 61.9% 

average bias reduction at 3.9% cost increase. The cost-

parity frontier analysis shows robust performance across 

diverse cost assumptions, enabling policy-driven fairness 

implementation rather than post-hoc bias detection. 

H4 confirms differential feature importance patterns, with 

alternative signals providing 5.3× greater value in limited-

bureau environments. This supports strategic alternative 

data investment for underbanked populations while 

maintaining traditional credit infrastructure value where 

available. 
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6.2 Data Environment Effects and Strategic 

Implications 

The consistent shift of each feature's importance 

relative to the amount of available data provides the basis 

for constructing a robust model to inform focused financial 

inclusion strategies. In data-rich environments, classic 

credit attributes remain unmatched in their predictive 

capability, thus justifying continued investment in credit 

bureau infrastructure and blanket data-sharing agreements. 

In stark relief, the predictive gains available in scant 

bureau environments (ΔAUC = 0.242 versus 0.105–0.137 

in full bureau) validate the claim that current supervised 

learning techniques offer the highest marginal 

improvements precisely where traditional feature sets are 

most wrong. This, in turn, provides a strong impetus for 

the integration of additional external data and for the use 

of XAI in credit risk evaluation in the more served 

markets. Examination of temporal stability indicates that 

model purity can be reasonably maintained, with the 

performance drop constrained to less than 3 per cent for 

the AUC across the fixed forecasting periods. An older, 

more illustrative 96-month chronologically ordered 

LendingClub data sequence demonstrates model 

obsolescence with a 24-month estimation period, thus 

supporting the idea that the obsolete model compels 

sustained, systematic model refresh cycles as part of a risk 

mitigation strategy. 

6.3 Regulatory and Compliance Implications 

The compliance assessment demonstrates 

substantial regulatory readiness improvements, 

particularly for adverse action requirements where XAI-

enhanced models score 9.1/10 vs 3.8/10 for traditional 

approaches. This addresses a critical deployment barrier 

given ECOA requirements for specific reason provision. 

Intersectional fairness analysis reveals consistent bias 

reduction across demographic combinations without 

systematic variation, supporting robust fairness 

implementation. However, the analysis is limited by the 

availability of protected attributes in public datasets, which 

may not reflect the full operational complexity. 

Only gender and age are available in Home Credit and 

Credit Card datasets; LendingClub contains no direct 

demographic attributes, so we used income as a 

socioeconomic proxy with apparent limitations. This 

constrains the scope of fairness analysis and reinforces the 

need for institution-specific audits. 

The fairness constraint optimisation provides explicit 

policy tools for balancing accuracy and equity, moving 

beyond post-hoc bias detection to proactive fairness 

management. Cost-parity frontiers enable transparent 

stakeholder discussions about acceptable trade-offs. 

6.4 Practical Implementation 

Recommendations 

Based on these results, financial institutions 

should implement XAI-enhanced credit scoring through 

several phases: 

Phase 1: Infrastructure Development 

 Deploy gradient boosting models 

(XGBoost/LightGBM) with TreeSHAP 

integration 

 Implement isotonic calibration for all probability 

outputs 

 Establish explanation, archiving, and version 

control systems 

Phase 2: Fairness Integration 

 Define institutional fairness tolerances and cost 

parameters 

 Implement constrained threshold optimisation 

with sensitivity analysis 

 Establish ongoing bias monitoring with alert 

thresholds 

Phase 3: Regulatory Compliance 

 Deploy automated adverse action reasoning using 

local SHAP explanations 

 Implement comprehensive model documentation 

and audit trails 

 Establish regular recalibration schedules based on 

temporal stability monitoring 

Phase 4: Alternative Data Integration 

 Prioritise alternative data acquisition for limited-

bureau populations 

 Maintain traditional credit infrastructure for data-

rich environments 

 Monitor for proxy discrimination in alternative 

data sources 

6.5 Limitations and Future Research 

Directions 

Several limitations constrain generalisability and 

suggest future research priorities. Public datasets may not 

reflect operational lending complexity, including real-time 

data streams, adversarial behaviour, and regulatory 

constraints specific to individual institutions. The cross-

sectional design cannot assess explanation stability under 

model retraining cycles or economic regime changes. 

Protected attribute availability varies significantly across 

datasets, limiting comprehensive fairness analysis. 



 
Japinye, A. O., & Adedugbe, A. A. (2025). Explainable AI for credit scoring with SHAP-calibrated ensembles: A multi-

market evaluation on public lending data. SSR Journal of Artificial Intelligence (SSRJAI), 2(3), 5-24. 19 

 

Alternative data features may encode protected 

characteristics as proxies, requiring ongoing monitoring 

for disparate impact despite explicit fairness constraints. 

Current fairness metrics may not capture all relevant equity 

dimensions, particularly for intersectional identities with 

small sample sizes. 

Future research should focus on: (1) longitudinal stability 

of explanations under model retraining; (2) user 

comprehension studies of automated adverse action 

reasoning; (3) integration of streaming alternative data 

while preserving fairness guarantees; (4) development of 

fairness metrics appropriate for thin-file populations; and 

(5) regulatory stress testing under various economic 

scenarios. 

6.6 Contribution to Explainable AI Literature 

This work advances explainable AI in finance by 

demonstrating integrated rather than post-hoc 

explainability implementation. The stability analysis 

provides a rigorous methodology for explaining reliability 

assessment, addressing a key gap in current XAI 

evaluation practices. The fairness-constrained 

optimisation framework offers practical tools for policy-

driven equity implementation rather than purely 

algorithmic approaches. 

The multi-environment evaluation design enables 

systematic assessment of XAI effectiveness across data 

contexts, providing more robust evidence than single-

dataset studies. The complete reproducibility package 

supports broader adoption and enables comparative 

evaluation across financial institutions and regulatory 

contexts. 

7.0 Conclusion 

This study demonstrates that explainable artificial 

intelligence can enhance rather than hinder credit scoring 

effectiveness when properly integrated into the modelling 

pipeline. The comprehensive evaluation across three data 

environments provides strong evidence that gradient 

boosting models with SHAP explanations, probability 

calibration, and fairness constraints offer superior 

performance compared to traditional interpretable 

approaches. 

Key findings include: (1) XGBoost with isotonic 

calibration achieves superior discrimination and 

calibration across all environments; (2) SHAP 

explanations maintain high stability (τ = 0.930) enabling 

reliable adverse action reasoning; (3) fairness constraints 

reduce demographic disparities by 62% with modest cost 

increases of 4%; and (4) alternative data provides most 

significant value in limited-bureau environments where 

traditional scoring struggles most. 

The practical implications support strategic XAI 

deployment for financial institutions seeking to balance 

accuracy, transparency, and regulatory compliance. The 

complete governance package, including model cards, 

monitoring frameworks, and adverse action templates, 

enables immediate implementation while supporting 

ongoing audit requirements. 

This integrated approach to explainable credit scoring 

provides a foundation for responsible AI deployment in 

financial services, demonstrating that the traditional 

accuracy-interpretability trade-off can be overcome 

through careful methodology and appropriate tool 

selection. 

Data and Code Availability Statement 

Complete reproducibility artefacts are available at 

https://github.com/chukant20-cyber/explainable-credit-

scoring/, including: 

 Data preprocessing scripts with exact 

transformations and random seeds 

 Model training code with hyperparameter 

specifications 

 Explanation generation and stability analysis 

implementations 

 Fairness evaluation and optimisation frameworks 

 Statistical testing procedures with multiple 

comparison corrections 

 Complete documentation enabling exact 

reproduction 

Public datasets can be obtained from original sources: 

 Home Credit Default Risk: Kaggle competition 

(2018) 

 Default of Credit Card Clients: UCI ML 

Repository (Dataset ID: 350) 

 LendingClub data: Historical loan data (2007-

2015 vintage) 

Preprocessing instructions and version specifications are 

documented to ensure identical splits and feature 

engineering across reproduction attempts. 

Ethics Statement 

This research uses only publicly available 

datasets containing no personally identifiable information. 

All datasets were obtained through proper licensing 

channels with appropriate permissions for research use. 

The fairness analysis acknowledges significant limitations 

in protected attribute availability across public datasets. 

Results should not be interpreted as a comprehensive 

fairness assessment without additional analysis using 

operational data with complete demographic information. 

https://github.com/chukant20-cyber/explainable-credit-scoring/
https://github.com/chukant20-cyber/explainable-credit-scoring/
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The proposed framework includes ongoing monitoring 

capabilities to detect and mitigate bias in deployment 

contexts. However, proxy discrimination remains possible 

through alternative data features, requiring institution-

specific validation and monitoring procedures. 

No human subjects were involved in this research. All 

computational experiments were conducted using de-

identified secondary data in compliance with applicable 

data protection regulations. 

Compliance Statement 

The proposed framework addresses key regulatory 

requirements, including: 

 Equal Credit Opportunity Act: Automated 

adverse action reasoning with specific 

contributing factors 

 Fair Credit Reporting Act: Model 

documentation and decision audit capabilities 

 Consumer Financial Protection Bureau 

guidance: Bias monitoring and explanation 

quality standards 

 Model risk management: Version control, 

validation frameworks, and ongoing monitoring 

However, regulatory compliance requires institution-

specific implementation addressing local requirements, 

data governance policies, and supervisory expectations. 

The framework provides tools and methodology, but 

cannot substitute for legal counsel and regulatory 

consultation. 

Risk Statement 

The associated risks of implementing machine 

learning in credit decision-making are multifaceted and 

require continuous oversight:   

Model Risk: Loss of performance over time, inability to 

characterise the model, and thus overfitting to patterns that 

may not continue, and overfitting during retraining are all 

possibilities.   

Bias Risk: Discriminatory effects of proxy variables, 

discrimination in small minority populations, and attempts 

to improve fairness without addressing the primary equity 

criteria target constructs  

Operational Risk: Degradation of decision quality, 

decision system failures, explanation system malfunctions, 

and automated decision systems lacking adequate human 

oversight 

Regulatory Risk: Compliance that evolves throughout the 

process, supervisory black-box decision criticism, and 

adverse action rationale that is insufficient   

Reputational Risk: Criticism received for decisions made 

with algorithms, decisions lacking unjust discrimination 

yet subjected to disproportionate criticism, and automated 

reasoning abuse   

Institutions should employ rigorous risk management 

strategies that include regular validations, continuous 

oversight, and pre-defined response plans to incidents. 

Analysis shows these tools will mitigate these risks, 

although it is impossible to eliminate them. 
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Appendix A: Complete Model Cards 

A.1 Primary Model Card - XGBoost Credit Scoring System 

Model Details 

 Model type: Gradient boosting classifier (XGBoost v1.6.0) 

 Model date: [Implementation date] 

 Model version: 1.0 

 Training algorithm: Extreme Gradient Boosting with TreeSHAP explanations 

Intended Use 

 Primary use case: Consumer credit risk assessment with human oversight 

 Intended users: Credit underwriters, risk analysts, compliance officers 

 Out-of-scope uses: Employment screening, insurance underwriting, housing decisions 

 Human oversight: Required for all decisions above $50,000 or borderline score ranges 

Training Data 

 Data sources: Home Credit Default Risk (307K applications), Credit Card Default (30K customers), LendingClub 

(887K loans) 

 Data timeframe: 2005-2018 depending on source 

 Geographic coverage: Multi-market representation through public datasets 

 Data preprocessing: Median imputation, categorical encoding, winsorization 

 Class distribution: 5.6%-22.1% default rates across datasets 

Model Performance 

 Primary metric: AUC-ROC 0.89-0.92 across datasets 

 Calibration: Brier score 0.119-0.154 after isotonic regression 

 Cross-validation: 5-fold stratified with borrower-level grouping 

 Out-of-time validation: 1-3% performance degradation over 24-96 months 

Fairness Assessment 

 Protected attributes analyzed: Gender, age groups where available 

 Fairness metrics: Demographic parity, equalized odds, predictive parity, calibration within groups 

 Bias mitigation: Fairness-constrained threshold optimization 

 Intersectional analysis: Conducted where sample sizes exceed 1,000 observations 

Explainability 

 Method: TreeSHAP for global and local feature attributions 

 Stability: Kendall τ = 0.93 across bootstrap resamples 

 Local explanations: Generated and archived for all decisions 

 Adverse action support: Automated reason code generation 

Model Limitations 

 Data limitations: Public datasets may not reflect operational complexity 

 Temporal limitations: Performance may degrade without recalibration 

 Fairness limitations: Protected attribute availability varies across contexts 

 Proxy risk: Alternative features may correlate with protected characteristics 
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Monitoring and Maintenance 

 Performance monitoring: Monthly AUC and calibration assessment 

 Bias monitoring: Quarterly fairness metric evaluation with alert thresholds 

 Recalibration schedule: Annual or when performance degrades >2% 

 Version control: All model versions archived with explanations 

 

Contact Information 

 Model owner: [Institution risk management team] 

 Technical contact: [Data science team lead] 

 Compliance contact: [Model risk management officer] 

A.2 Adverse Action Reasoning Template 

Automated Adverse Action Notice Generation 

For each declined application, the system generates explanation using top SHAP contributors: 

Dear [Applicant Name], 

 

Thank you for your credit application. After careful review, we are unable to approve your request at this time. This decision 

was made using an automated credit scoring system that evaluates multiple factors. 

 

The primary factors that contributed to this decision were: 

 

1. [Top SHAP feature]: [Plain language description] 

   Impact: [Positive/Negative contribution to decision] 

    

2. [Second SHAP feature]: [Plain language description] 

   Impact: [Positive/Negative contribution to decision] 

    

3. [Third SHAP feature]: [Plain language description] 

   Impact: [Positive/Negative contribution to decision] 

 

Your credit score from this evaluation was [calibrated probability] out of 1.0, with our approval threshold set at [threshold 

value]. 

 

You have the right to request additional information about this decision within 60 days. You may also request a copy of your 

credit report and dispute any inaccurate information. 

 

To improve your creditworthiness for future applications: 

- [Personalized recommendations based on SHAP contributions] 

 

Sincerely, 

[Lending Institution] 
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Quality Assurance Protocol 

 Human review required for explanations with SHAP stability <0.8 

 Legal review of template language quarterly 

 Customer comprehension testing annually 

A.3 Monitoring and Alert Framework 

Performance Monitoring Dashboard 

 Real-time AUC tracking with control limits ±2 standard deviations 

 Daily calibration assessment using new approvals vs observed defaults 

 Weekly explanation stability monitoring using rolling 1000-sample windows 

Fairness Monitoring System 

 Automated demographic parity calculation for each protected attribute 

 Alert thresholds: >5% gap triggers review, >10% gap halts automated decisions 

 Monthly intersectional analysis report for compliance team 

Data Quality Monitoring 

 Feature distribution drift detection using Kolmogorov-Smirnov tests 

 Missing value pattern changes requiring explanation stability reassessment 

 New feature correlation analysis to detect proxy discrimination 

Escalation Procedures 

 Level 1: Automated alert to risk management team 

 Level 2: Model performance below acceptability threshold 

 Level 3: Regulatory compliance threshold breach requiring immediate intervention.

 


