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1. INTRODUCTION 

 Intrusion Detection Systems (IDS) have been 

pivotal in safeguarding computer networks from 

unauthorized access and malicious activities. 

Traditionally, IDS have been categorized into two primary 

types: signature-based and anomaly-based systems. 

Signature-based IDS detect known threats by matching 

patterns against predefined signatures, while anomaly-

based IDS identify deviations from established network 

baselines, potentially flagging novel or unknown attacks. 

However, with the increasing sophistication of cyber 

threats, traditional IDS methods have shown limitations. 

They often struggle to detect zero-day attacks, adapt to 

evolving attack vectors, and manage the vast volumes of 
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data generated in modern networks. This has led to a 

paradigm shift towards more intelligent and adaptive 

systems. (Carlin, 2016), 

The advent of machine learning (ML) and, more recently, 

deep learning (DL) has revolutionized various domains, 

including cybersecurity. Neural networks, particularly 

deep learning models, have demonstrated exceptional 

capabilities in learning complex patterns and 

representations from large datasets. Their application in 

IDS has been explored extensively, aiming to enhance 

detection accuracy, reduce false positives, and improve 

adaptability to new and evolving threats. (Chinnasamy, 

2025),  

Early applications of neural networks in IDS focused on 

utilizing architectures like Multi-Layer Perceptrons 

(MLPs) and Radial Basis Function (RBF) networks. These 

models were employed to classify network traffic as 

normal or anomalous based on extracted features. While 

they showed promise, their performance was often 

hindered by the limited complexity of the models and the 

challenges in feature engineering (Doshi-Velez, 2017). 

With the progression of deep learning, more advanced 

architectures have been applied to IDS. Convolutional 

Neural Networks (CNNs), Recurrent Neural Networks 

(RNNs), Long Short-Term Memory (LSTM) networks, 

and autoencoders have been utilized to capture spatial and 

temporal patterns in network traffic data. These models 

can automatically learn hierarchical features, reducing the 

need for manual feature extraction and enhancing the 

system's ability to detect complex attack patterns (Enaji, 

2024), 

For instance, CNNs have been employed to analyse 

packet-level data, identifying spatial hierarchies in the 

traffic. RNNs and LSTMs, on the other hand, are adept at 

capturing temporal dependencies, making them suitable 

for analysing sequences of network events over time. Auto 

encoders have been used for anomaly detection by learning 

a compact representation of the normal network behavior 

and identifying deviations from this baseline (Garcia, 

2024) 

Challenges in Implementing Deep Learning 

in IDS 

 Despite the promising capabilities of deep 

learning models, their implementation in IDS faces several 

challenges: 

i. Data Imbalance: The prevalence of normal traffic 

over malicious activities leads to imbalanced 

datasets, which can bias the model towards the 

majority class, reducing its ability to detect rare 

attacks. 

ii. High Dimensionality: Network traffic data often 

have high dimensionality, which can lead to 

overfitting and increased computational 

requirements. 

iii. Real-time Processing: IDS need to operate in real-

time, necessitating models that can process and 

analyse data swiftly without compromising 

accuracy. 

iv. Interpretability: Deep learning models, 

particularly deep neural networks, are often 

considered "black boxes," making it difficult to 

interpret their decision-making process, which is 

crucial for understanding and trusting the system's 

alerts (Gueriani, 2025) 

Recent Advances and Applications 

 Recent studies have focused on addressing these 

challenges and enhancing the effectiveness of deep 

learning-based IDS: 

i. Data Augmentation and Synthetic Data 

Generation: Techniques like Generative 

Adversarial Networks (GANs) have been explored 

to generate synthetic attack samples, helping to 

balance datasets and improve model robustness. 

ii. Feature Selection and Dimensionality 

Reduction: Methods such as Principal Component 

Analysis (PCA) and t-Distributed Stochastic 

Neighbor embedding (t-SNE) have been used to 

reduce the feature space, mitigating the curse of 

dimensionality and improving model efficiency. 

iii. Hybrid Models: Combining different deep 

learning architectures, such as CNN-LSTM 

hybrids, has been proposed to leverage the 

strengths of each model in capturing spatial and 

temporal patterns. 

iv. Explainable AI (XAI): Efforts are being made to 

enhance the interpretability of deep learning 

models in IDS, enabling security analysts to 

understand the rationale behind the system's 

decisions (Kılıç, 2025). 

Future Directions 

 The future of IDS lies in the continuous evolution 

of deep learning models and their integration with other 

technologies: 

i. Federated Learning: This approach allows for 

collaborative model training across decentralized 

devices without sharing raw data, enhancing 

privacy and scalability. 

ii. Edge Computing: Deploying IDS models at the 

network edge can reduce latency and bandwidth 

usage, enabling faster detection and response. 

iii. Adversarial Robustness: Developing models that 

are resilient to adversarial attacks is crucial to 

ensure the reliability and security of IDS. 

iv. Integration with Threat Intelligence: Combining 

IDS with threat intelligence feeds can provide 

contextual information, improving the system's 

ability to detect sophisticated attacks (Latif, 2025). 
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2. OBJECTIVES OF THE RESEARCH 

 The primary aim of this study is to investigate the 

application, effectiveness, and challenges of neural 

networks and deep learning models in enhancing Intrusion 

Detection Systems (IDS). To achieve this overarching 

goal, the study is guided by the following specific 

objectives: 

i. To examine the current state of IDS technologies: 

Assess the traditional and contemporary 

approaches to intrusion detection, highlighting their 

strengths and limitations in detecting diverse cyber 

threats, including zero-day attacks and multi-stage 

intrusions. 

ii. To explore the integration of neural networks in 

IDS: Analyze how various neural network 

architectures, such as Multi-Layer Perceptrons 

(MLPs), Convolutional Neural Networks (CNNs), 

and Recurrent Neural Networks (RNNs), are 

applied in detecting network intrusions. 

iii. To investigate deep learning models for enhanced 

intrusion detection: Evaluate advanced deep 

learning techniques, including Long Short-Term 

Memory (LSTM) networks, auto encoders, and 

hybrid models, in terms of accuracy, adaptability, 

and efficiency. 

iv. To identify challenges in applying deep learning to 

IDS: Examine practical and technical challenges 

such as data imbalance, high dimensionality, real-

time processing requirements, and the 

interpretability of deep learning models. 

v. To assess the performance of neural network and 

deep learning-based IDS: Conduct comparative 

analysis against traditional machine learning and 

signature-based IDS approaches, focusing on 

detection rate, false positive rate, and resilience 

against sophisticated attacks. 

vi. To propose future directions and improvements: 

Suggest strategies for optimizing IDS performance, 

including hybrid modelling, federated learning, 

explainable AI, and integration with threat 

intelligence, to enhance security in dynamic 

network environments. 

These objectives provide a clear roadmap for investigating 

the transformative role of neural networks and deep 

learning in modern IDS, balancing both technical 

evaluation and practical applicability. 

3. METHODOLOGY AND ANALYSIS 

 This study adopts a quantitative research design 

combined with experimental evaluation to examine the 

effectiveness of neural networks and deep learning models 

in Intrusion Detection Systems (IDS). The research 

involves both descriptive and analytical approaches, 

focusing on the performance, challenges, and comparative 

analysis of different IDS techniques. 

The methodology is structured into three phases: 

1. Data Collection and Preprocessing: Publicly available 

network traffic datasets will be used, such as NSL-

KDD, UNSW-NB15, and CICIDS2017, which include 

labeled instances of normal and malicious traffic. Pre-

processing steps include: 

o Handling missing values and data inconsistencies. 

o Feature normalization and scaling. 

o Encoding categorical features where applicable. 

o Splitting datasets into training, validation, and 

testing subsets (e.g., 70%-15%-15%). 

2. Model Development: The study evaluates multiple 

neural network and deep learning architectures, 

including: 

o Multi-Layer Perceptrons (MLPs): For baseline 

performance in classification tasks. 

o Convolutional Neural Networks (CNNs): To 

extract spatial features from network traffic data. 

o Recurrent Neural Networks (RNNs) and LSTM 

networks: To capture temporal dependencies and 

sequential patterns. 

o Auto encoders and Hybrid Models: For anomaly 

detection and dimensionality reduction. 

Hyper parameter optimization will be conducted using 

techniques such as grid search and Bayesian optimization 

to enhance model performance. 

3. Model Training and Evaluation: Models will be trained 

using supervised learning for labelled datasets and 

unsupervised/anomaly detection for unlabelled traffic. 

Evaluation metrics include: 

o Accuracy: Overall correct classification rate. 

o Precision, Recall, and F1-score: For evaluating the 

balance between false positives and false negatives. 

o Area under the Curve (AUC-ROC): For assessing 

classification quality in imbalanced datasets. 

o Detection Rate and False Positive Rate (FPR): 

Critical indicators for IDS performance. 

Analysis Techniques 

i. Comparative Analysis: Performance of neural 

network-based IDS will be compared against 

traditional machine learning models such as 

Support Vector Machines (SVM), Random Forests 

(RF), and Decision Trees (DT) to quantify 

improvement in detection capabilities. 

ii. Feature Importance and Dimensionality Analysis: 

Techniques like Principal Component Analysis 

(PCA) and t-Distributed Stochastic Neighbour 

embedding (t-SNE) will be employed to reduce 

dimensionality and identify key features 

contributing to accurate intrusion detection. 

iii. Temporal and Spatial Pattern Analysis: RNN and 

LSTM models will be analysed for their ability to 
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detect sequential and temporal attack patterns. 

CNN models will be evaluated for spatial feature 

extraction efficiency. 

iv. Robustness Testing: The models will be subjected 

to adversarial traffic scenarios and synthetic attack 

data generated using Generative Adversarial 

Networks (GANs) to assess resilience against novel 

or unseen attacks. 

v. Statistical Analysis: The study will apply statistical 

tests, including ANOVA and t-tests, to determine 

the significance of performance differences among 

models. Correlation analysis will help identify 

relationships between model complexity, feature 

selection, and detection performance. 

Expected Outcomes of Analysis 

a. Identification of optimal neural network and deep 

learning architectures for IDS. 

b. Quantitative comparison of traditional vs. deep 

learning-based IDS in terms of detection accuracy, 

FPR, and computational efficiency. 

c. Insights into feature importance, temporal and 

spatial patterns in network traffic, and robustness 

against adversarial attacks. 

d. Recommendations for deploying scalable, real-time 

deep learning IDS in modern network 

environments. 

This methodology ensures a systematic, reproducible, and 

data-driven approach to evaluating deep learning and 

neural networks in IDS, balancing performance 

assessment, robustness, and practical deployment 

considerations. 

4. RESEARCH HYPOTHESES 

The following are the Research hypotheses of the 

research: 

i. H₁: Neural network-based IDS models (e.g., MLPs, 

CNNs, and RNNs) exhibit significantly higher 

detection accuracy than traditional signature-based 

IDS in identifying network intrusions. 

ii. H₂: Deep learning models, particularly LSTM and 

hybrid CNN-LSTM architectures, are more 

effective in detecting temporal and sequential 

attack patterns compared to conventional machine 

learning models. 

iii. H₃: Incorporating feature selection and 

dimensionality reduction techniques improves the 

performance and computational efficiency of deep 

learning-based IDS. 

iv. H₄: Deep learning-based IDS are more resilient to 

zero-day attacks and novel intrusion patterns than 

traditional anomaly detection methods. 

v. H₅: The application of generative models (e.g., 

GANs) for data augmentation in IDS training 

datasets reduces false positive rates and enhances 

overall detection performance. 

5. THEMATIC ANALYSIS AND 

LITERATURE REVIEW 

 Recent studies highlight the growing 

effectiveness of neural networks and deep learning models 

in Intrusion Detection Systems (IDS). Traditional 

signature-based methods are limited in detecting novel 

attacks, whereas deep learning approaches such as CNNs, 

RNNs, LSTMs, and auto encoders can automatically 

extract complex spatial and temporal features from 

network traffic. Researchers have explored hybrid models, 

feature selection, and data augmentation using GANs to 

improve detection accuracy and reduce false positives. 

Comparative analyses indicate that deep learning-based 

IDS outperform conventional machine learning 

techniques, particularly in handling zero-day attacks and 

high-dimensional datasets, demonstrating their potential as 

adaptive, intelligent cybersecurity solutions. 

5.1 Theoretical Review 

 The theoretical foundation of this study is 

grounded in machine learning theory, neural network 

theory, and cybersecurity principles. Neural networks are 

modelled after the human brain, capable of learning 

complex non-linear patterns from data, while deep 

learning extends this capability through multi-layered 

architectures for hierarchical feature extraction. In the IDS 

context, theories of anomaly detection, pattern recognition, 

and adaptive learning provide a basis for understanding 

how neural networks can identify both known and novel 

intrusions in network traffic. These theories support the 

development of models capable of continuous learning and 

self-adaptation in dynamic cyber environments. (Li, 2024). 

5.1.1 Foundations of Intrusion Detection 

Systems (IDS) 

 Intrusion Detection Systems (IDS) are integral to 

cybersecurity, designed to monitor network traffic and 

identify unauthorized access or malicious activities. The 

theoretical underpinnings of IDS encompass several key 

concepts: 

Anomaly Detection: This approach involves identifying 

patterns in network traffic that deviate from established 

norms, signalling potential intrusions. The theory posits 

that malicious activities often manifest as anomalies in 

system behaviour. 

Signature-Based Detection: This method relies on 

predefined patterns or signatures of known threats. While 

effective against known attacks, it struggles with detecting 

novel or zero-day threats. 

Hybrid Approaches: Combining anomaly and signature-

based methods aims to leverage the strengths of both, 

providing a more robust detection mechanism. 

These foundational concepts have guided the development 

of IDS, emphasizing the need for adaptive and intelligent 
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systems capable of detecting a wide range of threats 

(McMahan, 2017). 

5.1.2 Neural Networks in IDS 

 Neural Networks (NNs), inspired by the human 

brain's architecture, consist of interconnected layers of 

nodes (neurons) that process information. In the context of 

IDS, NNs are employed to: 

Feature Learning: Automatically extract relevant 

features from raw network data, reducing the need for 

manual feature engineering. 

Pattern Recognition: Identify complex patterns in 

network traffic indicative of intrusions. 

Adaptability: Learn and adapt to new, previously unseen 

attack patterns, enhancing the system's ability to detect 

novel threats. 

The theoretical basis for using NNs in IDS is supported by 

their capability to model complex, nonlinear relationships 

in data, making them suitable for the dynamic nature of 

network traffic. 

5.1.3 Deep Learning Models in IDS 

 Deep Learning (DL), a subset of machine 

learning, involves neural networks with many layers (deep 

architectures). DL models have theoretical advantages in 

IDS: 

Hierarchical Feature Extraction: DL models can learn 

multiple levels of abstraction, capturing intricate patterns 

in data. 

Temporal and Spatial Analysis: Recurrent Neural 

Networks (RNNs) and Long Short-Term Memory (LSTM) 

networks are adept at analyzing sequential data, making 

them effective for detecting time-dependent attacks. 

Scalability: DL models can handle large volumes of data, 

essential for modern network environments. 

The theoretical justification for DL in IDS is grounded in 

their ability to automatically learn representations from 

data, reducing the reliance on handcrafted features and 

improving detection accuracy. 

5.1.4 Theoretical Models and Architectures 

 Several theoretical models and architectures have 

been proposed to enhance IDS using NNs and DL: 

Convolutional Neural Networks (CNNs): Originally 

designed for image processing, CNNs have been adapted 

for IDS to capture spatial hierarchies in data. 

Auto encoders: Used for anomaly detection, auto 

encoders learn to compress data and reconstruct it, with 

significant reconstruction errors indicating potential 

anomalies. 

Hybrid Models: Combining CNNs, RNNs, and LSTMs 

aims to leverage the strengths of each, providing a more 

comprehensive detection mechanism. 

Theoretical models emphasize the importance of selecting 

appropriate architectures based on the specific 

characteristics of network data and the types of threats 

being mitigated. 

5.1.5 Challenges and Theoretical Limitations 

 Despite their advantages, the application of NNs 

and DL in IDS faces several theoretical challenges: 

Data Imbalance: The disproportionate number of normal 

versus malicious instances can lead to biased models that 

favour the majority class. 

Interpretability: The "black-box" nature of DL models 

makes it difficult to understand decision-making 

processes, which is crucial for trust and accountability in 

security systems. 

Generalization: Models trained on specific datasets may 

not generalize well to different network environments or 

emerging threats. 

Theoretical research continues to address these challenges 

by developing techniques for handling imbalanced data, 

improving model interpretability, and enhancing 

generalization capabilities. 

5.1.6 Future Theoretical Directions 

 Future theoretical advancements in IDS using 

NNs and DL may focus on: 

Explainable AI (XAI): Developing models that provide 

transparent decision-making processes to enhance trust 

and usability. 

Federated Learning: Enabling collaborative model 

training across decentralized devices without sharing raw 

data, preserving privacy. 

Transfer Learning: Applying knowledge gained from 

one domain to another, facilitating the adaptation of 

models to new environments. 

Reinforcement Learning: Allowing IDS to learn optimal 

detection strategies through interactions with the 

environment, improving adaptability to evolving threats. 

This theoretical review underscores the significant role of 

Neural Networks and Deep Learning models in advancing 

Intrusion Detection Systems. By understanding and 

leveraging these theoretical foundations, researchers and 

practitioners can develop more effective and adaptive 

security solutions to combat the ever-evolving landscape 

of cyber threats. 

5.2 Conceptual Review 

 Conceptually, IDS involves detecting 

unauthorized access or malicious activity within a 

network. Traditional approaches rely on signature-based 

detection, whereas deep learning IDS leverages 

supervised, unsupervised, and hybrid learning methods. 

Key concepts include feature extraction, temporal and 

spatial pattern recognition, dimensionality reduction, and 

anomaly scoring. Deep learning models such as CNNs, 
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RNNs, LSTMs, and autoencoders are central to this 

conceptual framework, offering the ability to 

automatically learn representations from raw network data 

and generalize to unseen attack types. 

The conceptual framework for applying neural networks 

and deep learning models in Intrusion Detection Systems 

(IDS) is grounded in the need to enhance traditional 

detection mechanisms with intelligent, adaptive, and data-

driven models. Conceptually, IDS operates within the 

intersection of cybersecurity, machine learning, and 

artificial intelligence, enabling the identification of 

malicious network behavior with higher accuracy and 

adaptability. 

5.2.1 Core Concepts of IDS 

i. IDS can be broadly categorized into two conceptual 

models: 

ii. Signature-based IDS: Relies on predefined 

signatures of known attacks. While efficient for 

detecting previously documented threats, it 

struggles with zero-day attacks. 

iii. Anomaly-based IDS: Establishes normal network 

behavior and flags deviations as potential 

intrusions. This approach aligns conceptually with 

machine learning and deep learning, which are 

well-suited for anomaly detection (Sommer & 

Paxson, 2010). 

iv. Hybrid IDS: Combines both methods to balance 

accuracy and adaptability (Zhang. 2025). 

5.2.2 Conceptual Role of Neural Networks 

 Neural networks (NNs) are conceptualized as 

adaptive classifiers capable of handling non-linear, high-

dimensional data. Within IDS, they serve three primary 

functions: 

i. Feature Extraction and Representation: 

Conceptually, NNs automate the extraction of 

features from network data, reducing reliance on 

manual feature engineering (Li et al., 2024). 

ii. Pattern Recognition: They classify traffic patterns 

as normal or malicious by learning hidden 

correlations. 

iii. Generalization: They can detect novel or unseen 

attacks by leveraging abstract representations. 

5.2.3 Conceptual Role of Deep Learning 

 Deep learning extends the NN concept by 

introducing multiple layers of abstraction: 

i. CNNs conceptually capture spatial dependencies in 

traffic data by treating packets or flow features as 

structured grids (Shone et al., 2018). 

ii. RNNs and LSTMs conceptualize temporal learning, 

enabling the detection of sequential attack patterns 

across sessions or logs (Yin et al., 2017). 

iii. Autoencoders function as reconstruction-based 

anomaly detectors, where high reconstruction error 

signals malicious traffic. 

iv. GANs are conceptualized as synthetic data generators, 

addressing dataset imbalance in IDS (Ennaji et al., 

2024). 

5.2.4 Key Conceptual Challenges 

 Despite their conceptual advantages, deep 

learning-based IDS face challenges: 

i. Data imbalance: The majority of traffic is benign, 

which biases models. GAN-based augmentation is 

conceptually proposed to balance datasets (Xu, 

2025). 

ii. Scalability: IDS must conceptually handle massive 

real-time data streams in large-scale networks. 

iii. Interpretability: Conceptually, deep models are 

“black boxes,” which hinders analyst trust. 

Explainable AI (XAI) is proposed to enhance 

transparency (Ennaji et al., 2024). 

5.2.5 Conceptual Integration with Future 

Technologies 

i. Federated Learning (FL): Conceptualizes 

distributed IDS training without centralizing 

sensitive data (Latif et al., 2025). 

ii. Reinforcement Learning (RL): Models IDS as a 

learning agent that adapts by interacting with 

evolving network environments (Yang, 2024). 

iii. Hybrid Architectures: Conceptually merge CNNs 

with LSTMs or autoencoders for richer 

representation teaching (Chinnasamy et al., 2025). 

5.2.6 Conceptual Framework Summary 

 The conceptual framework positions deep 

learning-based IDS as intelligent, adaptive, and scalable 

security systems. Unlike traditional models, they can 

automatically extract hierarchical features, generalize to 

novel threats, and integrate with advanced computational 

paradigms for real-time intrusion prevention. 

5.3 Empirical Review 

 Empirical studies demonstrate the effectiveness 

of neural networks and deep learning models in IDS. For 

example, research using datasets like NSL-KDD, 

CICIDS2017, and UNSW-NB15 shows that CNN-LSTM 

hybrid models achieve higher detection accuracy and 

lower false positive rates compared to traditional machine 

learning techniques such as SVMs and Random Forests. 

Autoencoders have been successfully applied for anomaly 

detection, while GANs are used to augment imbalanced 

datasets. Empirical findings consistently indicate that deep 

learning-based IDS can detect zero-day attacks, manage 

high-dimensional data, and adapt to evolving network 

threats. 
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5.3.1 Datasets and Benchmarks 

 Empirical IDS research relies heavily on 

benchmark datasets that approximate real network traffic 

and attack scenarios. The most commonly used are NSL-

KDD, CICIDS2017, and UNSW-NB15. CICIDS2017 

provides labelled flows resembling real PCAP-derived 

traffic and a mix of modern attack types, and is widely used 

to evaluate flow-based deep models. UNSW-NB15 

contains modern attack classes and richer feature sets 

suited for deep models, while NSL-KDD remains in use 

for comparability despite known limitations (class 

imbalance, synthetic biases). Choice of dataset 

substantially affects reported performance and cross-study 

comparability.  

5.3.2 Model Comparisons: CNNs, 

RNNs/LSTMs, and Hybrids 

 A recurring empirical finding is that hybrid 

architectures that combine spatial feature extraction 

(CNNs) with temporal sequence modelling 

(LSTMs/RNNs) often outperform single-architecture 

baselines on flow and sequence tasks. Several empirical 

studies report that CNN–LSTM hybrids achieve higher 

detection accuracy and better recall on multi-class 

intrusion detection than standalone CNNs or LSTMs, 

particularly on datasets containing both short-term 

packet/flow patterns and longer temporal behaviours. For 

example, Altunay et al. (2023) and more recent 

ACM/IEEE works show CNN+LSTM hybrids attaining 

state-leading accuracy on benchmark splits, while 2024–

2025 conference papers validate similar gains with 

attention mechanisms added to CNN-LSTM backbones. 

These results indicate that combining spatial and temporal 

inductive biases yields more robust detection of complex, 

multi-stage attacks. 

However, empirical improvements are not uniform: 

reported gains depend on pre-processing (feature selection, 

encoding), class balancing, and whether experiments use 

flow-level vs. packet-level inputs. Differences in train/test 

splitting strategies (e.g., chronologically realistic splits vs. 

random splits) also change generalization — models can 

appear strong under random splitting but fail under 

temporally realistic evaluation. Surveys emphasize the 

need for standardized evaluation protocols to avoid 

optimistic claims.  

5.3.3 Anomaly Detection: Auto encoders and 

Unsupervised Methods 

 Auto encoders and vibrational auto encoders are 

frequently used for unsupervised anomaly detection. 

Empirical studies show that reconstruction-error-based 

detectors obtain competitive detection rates for previously 

unseen attacks when sufficient normal data is available for 

training. Auto encoders are especially useful in 

environments where labeled attack data is scarce; their 

practical performance improves when combined with 

subsequent shallow classifiers or threshold calibration on 

validation flows. Recent empirical papers also examine 

denoising and sparse autoencoders to improve robustness 

to noisy traffic.  

5.3.4 Data Imbalance, Augmentation and 

GANs 

 A major empirical challenge is class imbalance—

benign traffic dominates, while particular attack classes are 

rare—leading to poor recall on minority attack classes. 

Generative approaches using GANs (and CE-GAN 

variants) have been evaluated as synthetic-data 

augmentation strategies. Recent empirical work (including 

a 2025 Scientific Reports CE-GAN study) demonstrates 

that GAN-augmented training datasets can significantly 

improve recall and F1 for rare attack classes while 

lowering false negatives, provided the generated samples 

are realistic and diverse. Nonetheless, GAN-based 

augmentation requires careful validation because low-

quality synthetic samples can mislead models or introduce 

artifacts (McMahan, 2017). 

5.3.5 Federated Learning and Privacy-

Preserving IDS 

 Federated learning (FL) has emerged empirically 

as a promising approach for collaborative IDS model 

training without sharing raw traffic (important for privacy 

and regulation). Recent empirical studies (2024–2025) 

demonstrate that FL can approach centralized training 

performance on DDoS and IoT attack detection while 

keeping data local; however, FL experiments show 

sensitivity to non-i.i.d. data distributions across clients and 

communication constraints (model update staleness, 

compression). Practical deployments show FL reduces 

privacy risk but introduces new challenges (client drift, 

poisoning resilience) that need empirical mitigation 

strategies.  

5.3.6 Adversarial Robustness: Attacks and 

Defences 

 Empirical work has highlighted that deep IDS 

models are vulnerable to adversarial manipulations 

(feature-space perturbations, packet timing tweaks) that 

produce misclassification while preserving benign 

appearance. Systematic studies (including a 2024 arXiv 

survey) report that transferability and black-box 

adversarial strategies can degrade detection substantially. 

Defenses empirically evaluated include adversarial 

training, input sanitization, ensembling, and detection of 

adversarial examples via auxiliary detectors; while these 

reduce vulnerability, they often come with computational 

cost or degrade benign performance, indicating a 

continuing arms race.  

5.3.7 Real-World Deployments and Edge/IoT 

Use Cases 

 Empirical case studies applying DL-based IDS to 

IoT, industrial control systems, and enterprise networks 

reveal mixed but promising results. LSTM-based detectors 

and lightweight CNNs have been successfully deployed on 
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resource-constrained devices when models are compressed 

(pruning, quantization) or when inference is offloaded. 

Hybrid attention models demonstrate improved recall for 

stealthy botnet and multi-stage attacks in controlled 

testbeds. Still, production deployments report operational 

issues: concept drift (network changes over time), data 

labeling bottlenecks, latency constraints for inline 

detection, and explainability needs for security analysts. 

These operational realities constrain some of the empirical 

performance improvements reported in lab settings.  

5.3.8 Evaluation Metrics and Experimental 

Rigor 

 Empirical studies use a range of metrics 

(accuracy, precision, recall, F1, AUC-ROC), but IDS 

practitioners stress that detection rate (recall) and false 

positive rate (FPR) have the most operational 

significance. Many academic works report high accuracy 

but omit class-wise recall or FPR at scale. Recent surveys 

call for more rigorous, scenario-aware evaluation: (1) 

reporting per-class metrics, (2) using temporally realistic 

splits (to simulate concept drift), (3) validating on multiple 

datasets, and (4) sharing code and seeds to improve 

reproducibility.  

5.3.9 Summary of Empirical Findings 

a. Hybrid CNN–LSTM and attention-augmented 

architectures consistently show strong empirical 

performance on mixed spatial-temporal intrusion 

tasks, outperforming single-architecture baselines 

in many studies.  

b. Autoencoders and unsupervised approaches 

remain effective where labelled attacks are scarce 

but require careful thresholding and calibration.  

c.GAN-based augmentation can improve detection of 

rare attack classes when synthetic samples are high 

quality, but carries the risk of artifact introduction.  

d. Federated learning shows promise for privacy-

sensitive collaborative IDS but needs empirical 

solutions for non-i.i.d. clients and robustness 

against poisoning.  

e.Adversarial attacks present real empirical threats to 

DL-IDS, and defenses are still an active and 

evolving area of research. 

5.3.10 Research Gaps and Directions 

(Empirical) 

Empirical literature points to several persistent gaps: 

i. Standardized, realistic evaluation protocols: 

experiments should adopt temporal splits, multiple 

datasets, and operational metrics (per-class recall, 

FPR at scale). 

ii. Cross-dataset generalization studies: there is a 

need for more transfer/transfer-learning 

experiments showing how models trained on one 

environment perform on another. 

iii. Robustness and explainability at scale: empirical 

work must concurrently improve adversarial 

robustness and model interpretability for analyst 

trust. 

iv. Efficient edge deployment experiments: more 

empirical evidence is needed on compressed model 

performance in production IoT and edge contexts.  

Key Empirical References (selected) 

i. Altunay H.C., et al., “A hybrid CNN+LSTM-based 

intrusion detection system…” ScienceDirect, 2023.  

ii. Chinnasamy R., et al., “Deep learning-driven 

methods for network-based intrusion detection” 

(systematic review), 2025.  

iii. Scientific Reports, “A CE-GAN based approach to 

address data imbalance in network intrusion 

detection systems,” 2025. 

iv. Ennaji S., et al., “Adversarial Challenges in 

Network Intrusion Detection Systems,” arXiv, 

2024.  

v. Buyuktanir B., et al., “Federated learning in 

intrusion detection: advancements…,” Springer, 

2025. 

vi. CIC Research Lab, “CIC-IDS2017 dataset” 

(dataset reference).  

6. DISCUSSION 

 The rapid evolution of networked systems and the 

proliferation of connected devices have expanded the 

attack surface in cyberspace. Traditional security 

mechanisms such as firewalls, access control lists, and 

signature-based antivirus systems are increasingly 

insufficient to cope with modern cyberattacks. Intrusion 

Detection Systems (IDS) have thus become a critical 

component of cybersecurity infrastructure, providing an 

additional layer of defense by monitoring network traffic 

and system logs to detect unauthorized activities. 

Historically, IDS relied heavily on signature-based 

detection, where attack patterns were predefined in rule 

sets. While effective against known attacks, this approach 

fails against zero-day exploits or novel attack strategies. 

Anomaly-based IDS emerged to overcome this limitation, 

employing statistical or machine learning approaches to 

establish baselines of normal network behavior and flag 

deviations. However, conventional machine learning 

techniques—such as decision trees, k-nearest neighbors 

(kNN), and support vector machines (SVM)—often 

struggle with high-dimensional data, feature engineering 

requirements, and poor generalization to new attacks 

(McMahan, 2017) 

In this context, neural networks and deep learning models 

have gained prominence. Their capacity to learn complex, 

non-linear patterns and automatically extract hierarchical 

representations from raw data make them well-suited for 

IDS. These models can handle large-scale, heterogeneous 

network data and adapt to evolving attack landscapes. 
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Moreover, deep learning approaches, including 

convolutional neural networks (CNNs), recurrent neural 

networks (RNNs), long short-term memory (LSTM) 

models, autoencoders, and generative adversarial networks 

(GANs), have demonstrated superior performance 

compared to traditional IDS in terms of accuracy, 

adaptability, and scalability. 

This discussion provides an in-depth analysis of neural 

networks and deep learning models in IDS, integrating 

theoretical foundations, conceptual frameworks, and 

empirical evidence. It critically examines the strengths, 

limitations, and future directions of deep learning-driven 

IDS, aiming to highlight how these models can shape the 

next generation of intelligent and adaptive cybersecurity 

systems. 

6.1 Strengths 

i. High Accuracy and Adaptability of Hybrid Models: 

One of the most significant strengths of neural 

network–based IDS is their accuracy and 

adaptability, especially when employing hybrid deep 

learning architectures such as CNN-LSTM, CNN-

GRU, and attention-based networks. Hybrid models 

combine the spatial learning strengths of CNNs with 

the sequential pattern learning of RNNs/LSTMs, 

resulting in improved detection of both packet-level 

anomalies and flow-based intrusions (Gueriani, 

Kheddar, & Mazari, 2025). For example, Gueriani et 

al. (2025) reported 99.04% accuracy in multi-class 

intrusion detection using an attention-based CNN-

LSTM on Edge-IIoTset, while Srilatha and 

Thillaiarasu (2024) demonstrated 99.27% test 

accuracy on cloud network datasets using a CNN-

LSTM model. These empirical results highlight the 

adaptability of hybrid models across diverse 

environments (cloud, IoT, industrial IoT), 

underscoring their robustness against heterogeneous 

traffic patterns. 

ii. GANs Addressing Long-standing Class Imbalance: 

Another strength lies in the integration of Generative 

Adversarial Networks (GANs) for tackling class 

imbalance in intrusion detection datasets. Rare attacks 

such as User-to-Root (U2R) and Remote-to-Local 

(R2L) often suffer from poor recall due to 

underrepresentation in datasets like CICIDS2017 or 

UNSW-NB15 (Kılıç & Özçelik, 2025). GAN-based 

augmentation generates realistic synthetic examples 

for minority classes, boosting model sensitivity 

without compromising overall accuracy. VAE-

WACGAN variants have further advanced this by 

combining variational autoencoders with GANs, 

improving precision and recall on imbalanced 

benchmarks (PubMed, 2024). Thus, GANs effectively 

mitigate a challenge that has persisted since the earliest 

IDS studies. 

iii. Federated Learning Ensuring Privacy-preserving IDS: 

Federated Learning (FL) is a major breakthrough in 

applying deep learning to IDS, particularly in 

distributed IoT and cloud-edge networks. By enabling 

collaborative training across decentralized devices 

without centralizing raw traffic data, FL ensures data 

privacy and compliance with modern regulatory 

frameworks (McMahan et al., 2017). Shen et al. (2024) 

proposed an ensemble knowledge distillation–based 

FL method that improved generalization across non-

IID IoT datasets while reducing communication 

overhead. Similarly, Wen, Yu, and Hu (2025) 

introduced DWKAFL-IDS, a federated IDS achieving 

99.02% detection accuracy on IoT benchmarks. These 

studies demonstrate that FL addresses privacy concerns 

while maintaining high accuracy, making it suitable for 

real-world, large-scale deployments. 

6.2 Challenges 

i. Computational and Communication Costs in 

Federated Setups: Despite its promise, federated 

learning introduces substantial computational and 

communication overhead. Edge devices and IoT 

nodes often operate under constrained resources, 

limiting their ability to train complex DL models 

locally (Wen, 2025). Additionally, frequent model 

updates across distributed clients create 

communication bottlenecks, which are particularly 

problematic in low-bandwidth or high-latency 

environments. Optimization techniques, such as 

model compression, parameter quantization, and 

adaptive aggregation strategies, have been proposed, 

but empirical studies show that scalability remains a 

core challenge in FL-based IDS (Shen, 2024). 

ii. Limited Interpretability of Deep Models: Another 

challenge lies in the interpretability problem of deep 

neural networks, often described as “black-box” 

systems. Security analysts must understand why an 

IDS flags traffic as malicious to assess credibility, 

implement responses, and comply with auditing 

requirements (Doshi-Velez & Kim, 2017). However, 

DL architectures like CNN-LSTM or GAN-based 

models provide limited transparency. Without 

explainability, adoption in mission-critical domains 

(e.g., healthcare, finance, defense) may face 

resistance. While Explainable AI (XAI) techniques 

are emerging, empirical integration into IDS remains 

limited. 

iii. Vulnerability to Adversarial Attacks: Paradoxically, 

while deep models enhance IDS performance, they 

are also vulnerable to adversarial attacks. Carefully 

crafted perturbations in input data can cause DL-

based IDS to misclassify malicious traffic as benign 

(Carlini & Wagner, 2017). For instance, studies show 

that even small modifications in packet headers or 

payload distributions can bypass DL-based 

classifiers. This raises concerns about robustness and 

reliability, particularly in environments where 

attackers can probe models systematically. Defensive 

strategies like adversarial training and detection 

mechanisms are still underdeveloped in IDS 

research. 
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6.3 Research Gaps 

i. Few Real-time Deployment Studies on Resource-

constrained IoT Devices: Although hybrid DL and 

federated models demonstrate strong results in 

benchmark datasets, relatively few studies explore 

real-time deployments in IoT environments with 

limited computation, memory, and power (Wen et al., 

2025). Most evaluations occur in offline or simulated 

settings, leaving gaps in understanding how these 

models perform under live traffic loads, concept drift, 

or device failures. This disconnects hampers practical 

adoption. 

ii. Lack of Standardized Benchmarking Protocols: 

Another research gap involves the lack of 

standardization in benchmarking IDS models. Current 

studies use diverse datasets (NSL-KDD, CICIDS2017, 

UNSW-NB15, Edge-IIoTset), split methods (random 

vs. chronological), and evaluation metrics (accuracy, 

precision, recall, F1, AUC). This inconsistency makes 

cross-comparison unreliable and risks overstating 

model performance. Establishing unified evaluation 

frameworks—including real-time datasets and 

adversarial testing—remains an urgent research need 

(García-Teodoro, 2024). 

iii. Limited Exploration of Explainability in IDS Models: 

Finally, explainability in deep learning IDS remains 

underexplored. While interpretability is recognized as 

a key issue, most IDS studies emphasize accuracy, 

recall, and F1 scores, with few integrating XAI 

methods such as SHAP, LIME, or counterfactual 

reasoning. Without transparency, IDS models risk 

limited adoption in regulated industries and critical 

infrastructure, where accountability and traceability are 

non-negotiable (Doshi-Velez & Kim, 2017). Bridging 

this gap requires interdisciplinary work between 

machine learning researchers, cybersecurity 

professionals, and regulatory bodies. 
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10. CONCLUSION 

 The evolution of cybersecurity threats in an 

increasingly interconnected digital ecosystem has 

necessitated the development of intelligent, adaptive, and 

scalable solutions for intrusion detection. Traditional 

Intrusion Detection Systems (IDS), while foundational in 

safeguarding networks, have struggled to keep pace with 

the complexity and dynamism of modern attack vectors. In 

this regard, neural networks and deep learning models 

have emerged as transformative technologies, offering 

enhanced capabilities in anomaly detection, feature 

learning, and real-time traffic analysis. 

From the theoretical and conceptual reviews, it is evident 

that deep learning architectures such as Convolutional 

Neural Networks (CNNs), Recurrent Neural Networks 

(RNNs), Long Short-Term Memory (LSTM) models, 

Autoencoders, and Generative Adversarial Networks 

(GANs) play critical roles in advancing IDS capabilities. 

CNNs provide robust spatial feature extraction, while 

RNNs and LSTMs capture temporal dependencies 

essential for identifying sequential intrusion patterns. 

Autoencoders enable anomaly detection through 

reconstruction error, whereas GANs address long-standing 

challenges of class imbalance by generating synthetic 

minority attack samples. This multifaceted utility 

underscores the adaptability and versatility of deep 

learning in IDS research. 

Empirical studies reinforce these theoretical advantages. 

Hybrid models, combining CNN and LSTM, have 

consistently demonstrated high detection accuracy 

exceeding 99% across benchmark datasets such as 

CICIDS2017, NSL-KDD, and UNSW-NB15. Federated 

Learning (FL) has further extended IDS to distributed 
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environments, enabling privacy-preserving collaborative 

training without centralizing sensitive traffic data. Such 

advancements not only elevate detection rates but also 

align with regulatory demands for data confidentiality, 

especially in IoT and cloud-edge infrastructures (Wen, et 

al). 

Nevertheless, several challenges persist. Deep learning-

based IDS face issues of computational cost, limited 

interpretability, and vulnerability to adversarial attacks. 

Federated Learning introduces communication overhead, 

which is unsustainable for resource-constrained IoT 

devices. Furthermore, the black-box nature of neural 

networks hampers their adoption in regulated 

environments where explainability is essential. Equally 

concerning is the susceptibility of these models to 

adversarial evasion, where carefully crafted traffic patterns 

can deceive even robust classifiers (Li, et al). 

Beyond challenges, the research gaps identified—such as 

limited real-time deployment in IoT devices, lack of 

standardized benchmarking protocols, and insufficient 

exploration of explainability—reveal that while deep 

learning IDS research is mature in experimental 

evaluations, its practical deployment remains 

underdeveloped. A critical reflection indicates that the next 

frontier for IDS lies not in maximizing accuracy within 

controlled benchmarks, but in ensuring robustness, 

interpretability, and deployability under real-world 

constraints. 

In conclusion, neural networks and deep learning models 

represent a paradigm shift in IDS development. They 

enable more intelligent, adaptive, and resilient systems that 

can evolve alongside the cyber threat landscape. However, 

for these models to transition from promising prototypes 

to dependable real-world solutions, future research must 

focus on balancing accuracy with transparency, 

robustness, and scalability. Only then can deep learning 

truly fulfill its promise as a cornerstone of next-generation 

cybersecurity. 

11. RECOMMENDATION 

1. Promote Hybrid Architectures for Improved 

Accuracy and Adaptability: Given the demonstrated 

effectiveness of hybrid models such as CNN-LSTM 

and CNN-GRU in handling both spatial and temporal 

intrusion features, researchers and practitioners 

should prioritize their implementation in IDS. 

Further experimentation with attention mechanisms 

and transformer-based architectures could enhance 

adaptability to dynamic network environments. For 

industrial and IoT applications, hybrid architectures 

should be optimized for lightweight deployment 

without sacrificing detection accuracy. 

2. Integrate GANs for Addressing Class Imbalance: 

Researchers should extend the application of GAN-

based synthetic data generation for underrepresented 

attack types such as U2R and R2L. The adoption of 

advanced GAN variants (e.g., Conditional GANs, 

Wasserstein GANs) can improve data realism and 

prevent mode collapse. Additionally, combining 

GANs with variational autoencoders (VAE-GANs) 

could further boost minority class detection rates. To 

ensure practicality, generated data must undergo 

rigorous validation to avoid introducing biases into 

IDS training pipelines. 

3. Advance Federated Learning for Privacy-preserving 

IDS: Although Federated Learning has shown 

promise, challenges in communication and 

computation remain barriers to its widespread 

adoption. Future research should explore adaptive 

aggregation strategies, edge intelligence, and model 

compression techniques (e.g., pruning and 

quantization) to reduce overhead. Moreover, 

combining FL with blockchain-based consensus 

mechanisms could enhance trust, accountability, and 

tamper-resistance in collaborative IDS training. 

Policymakers and industry leaders should also 

promote federated frameworks to ensure privacy 

compliance in cross-organizational IDS 

deployments. 

4. Enhance Model Interpretability Through Explainable 

AI (XAI): The black-box nature of deep learning 

models undermines trust and limits their adoption in 

regulated sectors such as healthcare, finance, and 

critical infrastructure. Thus, integrating XAI 

techniques (e.g., SHAP, LIME, counterfactual 

reasoning) into IDS is essential. Future IDS research 

should not only report accuracy metrics but also 

evaluate interpretability performance. Furthermore, 

visualization dashboards should be developed to 

translate IDS outputs into human-readable insights 

for network analysts. 

5. Strengthen Robustness Against Adversarial Attacks: 

Given the vulnerability of deep learning IDS to 

adversarial manipulations, defensive mechanisms 

such as adversarial training, input sanitization, and 

robust feature engineering must be incorporated. 

Researchers should also simulate adversarial 

scenarios within IDS benchmarking to evaluate 

model resilience. Collaboration between 

cybersecurity experts and adversarial machine 

learning researchers will be vital in building IDS 

models that withstand real-world adversarial tactics. 

6. Standardize Benchmarking Protocols for IDS 

Research: The absence of uniform evaluation 

standards makes it difficult to compare IDS 

performance across studies. To address this, the 

cybersecurity research community should collaborate 

in creating standardized protocols encompassing 

dataset selection, preprocessing methods, evaluation 

metrics, and adversarial testing. Establishing shared 

repositories of real-time, diverse, and up-to-date 

datasets will further ensure that IDS models reflect 

practical deployment conditions rather than 

controlled simulations. 

7. Expand Real-time Deployment Studies in Resource-

constrained Environments: There is a pressing need 

for large-scale experiments that deploy deep learning 

IDS in IoT, edge, and mobile environments. Such 
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studies will reveal challenges of concept drift, 

latency, and resource limitations that are often 

overlooked in offline experiments. Researchers 

should focus on lightweight IDS architectures 

optimized for low-power devices, potentially 

leveraging TinyML and model distillation to balance 

performance with efficiency. 

8. Encourage Interdisciplinary Collaboration: The 

challenges of scalability, interpretability, and 

deployment in IDS extend beyond technical 

considerations. Collaboration between computer 

scientists, cybersecurity experts, regulatory bodies, 

and policymakers is necessary to develop holistic 

frameworks that balance performance, privacy, and 

compliance. For example, integrating legal 

requirements such as GDPR with technical solutions 

like Federated Learning will be crucial for global IDS 

adoption. 

9. Incorporate Ethical Considerations into IDS 

Development: Ethical concerns such as data privacy, 

algorithmic bias, and fairness must be addressed 

proactively in IDS design. Researchers should ensure 

that IDS models are not disproportionately biased 

against specific traffic types or users. Developing 

frameworks for ethical auditing of IDS models will 

help align technical innovation with societal 

expectations and regulatory standards. 

10. Foster Continuous Learning and Adaptive Security 

Frameworks: Cyber threats are dynamic, with 

attackers constantly evolving tactics to bypass 

defenses. IDS models must therefore incorporate 

mechanisms for continuous learning and adaptive 

response. Online learning algorithms, reinforcement 

learning, and self-improving federated architectures 

can ensure that IDS remain relevant and effective 

over time. Integrating IDS with Security Information 

and Event Management (SIEM) systems will also 

enhance their operational utility by linking detection 

with automated response mechanisms. 

FINAL REFLECTIONS 

 The integration of neural networks and deep 

learning into Intrusion Detection Systems marks a 

paradigm shift in cybersecurity defence. While accuracy 

benchmarks demonstrate the promise of these approaches, 

their true value lies in practical, real-world applications. 

Achieving this requires overcoming challenges of 

scalability, explain ability, and robustness, while 

simultaneously addressing ethical and regulatory 

concerns. 

Moving forward, researchers and practitioners must shift 

their focus from accuracy-centric evaluations to holistic 

frameworks that encompass performance, interpretability, 

resilience, and deployability. With continued 

interdisciplinary collaboration, investments in explain 

ability, and standardized benchmarking, deep learning-

based IDS can evolve into trustworthy, scalable, and 

resilient solutions capable of protecting modern networks 

against ever-evolving cyber threats. 
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