

Blue, Green and Circular Economies as a Panacea to Environmental Sustainability: An Empirical Assessment

Ezra Yunana Parah¹ & Tony Aku Amba²¹Department of Geography, Plateau State University, Bokkos, Plateau State²Nigeria Environmental Society (NES) Headquarters, 41, Moses Majekodunmi Crescent, Utako District, Abuja, FCT**Received: 01.12.2025 / Accepted: 16.12.2025 / Published: 20.12.2025*****Corresponding Author:** Tony Aku Amba**DOI:** [10.5281/zenodo.17994904](https://doi.org/10.5281/zenodo.17994904)**Abstract****Original Research Article**

Environmental degradation, climate change, biodiversity loss, and resource depletion continue to undermine sustainable development globally, particularly in developing economies. In response, the blue, green, and circular economy frameworks have emerged as integrated development paradigms aimed at decoupling economic growth from environmental harm. Despite their growing prominence in policy discourse, empirical evidence on their combined effectiveness in promoting environmental sustainability remains limited, especially within African contexts. This study empirically examines the extent to which blue, green, and circular economy practices contribute to environmental sustainability outcomes. Using a mixed-methods research design, data were collected from 320 stakeholders across public institutions, private organizations, environmental NGOs, and local communities. Quantitative data were analyzed using descriptive statistics, correlation, and multiple regression analysis, while qualitative data from key informant interviews were analyzed thematically. Findings reveal that while all three economic paradigms significantly enhance environmental sustainability, circular economy practices exert the strongest influence, followed by green and blue economy initiatives. The study concludes that an integrated adoption of blue, green, and circular economy strategies constitutes a viable pathway toward environmental sustainability, provided that institutional capacity, financing, and policy coherence are strengthened.

Keywords: Blue economy, green economy, circular economy, environmental sustainability and Resource exploitation.

Copyright © 2025 The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).

Introduction

Environmental sustainability has emerged as a defining challenge of contemporary development as human activities continue to exert unprecedented pressure on natural ecosystems. Climate change, biodiversity loss, marine pollution, land degradation, and excessive waste generation have intensified due to rapid population growth, urbanization, industrial expansion, and unsustainable consumption patterns. Global assessments increasingly warn that current economic models, which prioritize growth over ecological limits, are incompatible with planetary boundaries and threaten long-term human well-being (IPCC, 2023; IPBES, 2023). As a result, there is growing recognition that achieving sustainability requires fundamental transformations in how economies produce, consume, and interact with nature.

In response to these challenges, the green economy has gained prominence as a development paradigm that seeks to reconcile economic growth with environmental protection and social inclusion. The green economy promotes low-carbon development, renewable energy adoption, resource efficiency, and environmentally responsible production and consumption practices (UNEP, 2011, 2023). Empirical evidence suggests that green economy strategies can reduce greenhouse gas emissions, improve air quality, and stimulate green job creation when supported by effective policies and institutions (OECD, 2022). However, while the green economy addresses energy and emission challenges, it has been criticized for insufficiently confronting material consumption and waste generation, especially in rapidly industrializing societies.

Alongside the green economy, Pauli (2010) explained that the blue economy and circular economy have emerged as complementary sustainability frameworks addressing specific ecological and material dimensions of development. The blue economy emphasizes the sustainable use of oceanic and freshwater resources for economic growth, livelihoods, and ecosystem resilience, recognizing aquatic systems as critical natural capital (World Bank, 2021). The circular economy, in contrast, seeks to replace linear “take–make–dispose” models with closed-loop systems that prioritize waste reduction, reuse, recycling, and resource recovery (Ellen MacArthur Foundation, 2013). Together, these paradigms according to Stahel (1998) broaden the sustainability agenda by addressing marine ecosystems, material flows, and production–consumption systems.

Despite their increasing prominence in policy and academic discourse, the blue, green, and circular economy frameworks are often implemented in isolation, limiting their transformative potential. Moreover, empirical studies assessing their combined contribution to environmental sustainability remain limited, particularly in developing country contexts. This study therefore examines blue, green, and circular economies as integrated pathways to environmental sustainability, providing empirical evidence on their individual and comparative impacts. By doing so, the study contributes to sustainability scholarship and offers practical insights for policymakers seeking holistic and effective strategies for environmental sustainability.

Statement of the Problem

Despite increasing policy commitments to sustainable development, environmental degradation continues unabated in many developing economies. Issues such as improper waste management, marine pollution, deforestation, biodiversity loss, water contamination, and greenhouse gas emissions remain prevalent. While the concepts of blue, green, and circular economies are frequently referenced in policy documents and development strategies, their practical implementation has been uneven and inadequately evaluated. Most existing studies examine these paradigms

independently, focusing either on renewable energy transitions (green economy), marine resource management (blue economy), or waste reduction and recycling (circular economy). This fragmented approach limits understanding of how these frameworks interact and whether their integration yields superior environmental outcomes. Additionally, there is a lack of empirical studies that quantitatively measure the contribution of these economic paradigms to environmental sustainability while incorporating stakeholder perspectives. The absence of empirical evidence poses a significant challenge for policymakers, as decisions are often based on normative assumptions rather than data-driven insights. Without rigorous empirical assessment, it remains unclear which paradigm offers the greatest sustainability benefits or how they can be synergistically implemented. This study addresses this gap by empirically assessing the combined and individual contributions of blue, green, and circular economy practices to environmental sustainability.

Aim of the Research and Objectives of the Research

The aim of this research is to empirically examine the extent to which blue, green, and circular economy frameworks contribute to environmental sustainability. Specifically, the study seeks to generate evidence-based insights into how the adoption of these alternative economic paradigms influences environmental outcomes such as resource efficiency, waste reduction, ecosystem conservation, and pollution control, while also identifying the institutional and contextual factors that shape their effectiveness. By integrating quantitative and qualitative evidence, the research aims to inform policy formulation and implementation strategies that promote sustainable development through holistic economic transformation.

In order to achieve the stated aim, this study pursues several interrelated objectives. First, it seeks to assess the contribution of blue economy practices particularly those related to sustainable management of marine and freshwater resources, to environmental sustainability outcomes. Second, the study aims to examine the influence of green economy initiatives, including renewable energy adoption, energy efficiency,

and low-carbon development strategies, on environmental sustainability. Third, it seeks to determine the relationship between circular economy practices, such as waste reduction, recycling, and resource recovery, and environmental sustainability. Fourth, the research aims to compare the relative effectiveness of blue, green, and circular economy approaches in enhancing environmental sustainability. Finally, the study seeks to identify the institutional, policy, and contextual factors that facilitate or constrain the successful implementation of these economic paradigms, with a view to providing practical recommendations for policymakers and stakeholders.

LITERATURE REVIEW

2.1 Conceptualizing the Three Economies

The concepts of the green, blue, and circular economies have emerged as transformative frameworks aimed at addressing the limitations of conventional linear and growth-driven economic systems. These paradigms are rooted in sustainability science and ecological economics, emphasizing the need to harmonize economic development with environmental protection and social well-being. Early sustainability scholars argued that economic systems must operate within ecological limits to ensure long-term viability (Pearce et al., 1989; Stahel, 1998). Building on this foundation, the three economies provide distinct but complementary lenses through which sustainable development can be pursued.

The green economy is broadly conceptualized as an economic system that results in improved human well-being and social equity while significantly reducing environmental risks and ecological scarcities. According to the United Nations Environment Programme (UNEP, 2011), the green economy prioritizes low-carbon development, resource efficiency, and social inclusiveness through investments in renewable energy, sustainable agriculture, and green infrastructure. This concept gained prominence in global policy discourse following the 2008 financial crisis as a pathway to economic recovery and environmental sustainability, and it remains central to achieving the Sustainable

Development Goals (United Nations, 2015; UNEP, 2023).

The blue economy and circular economy extend sustainability thinking into specific ecological and material domains. The blue economy focuses on the sustainable use of oceanic and freshwater resources for economic growth, livelihoods, and ecosystem health, recognizing aquatic ecosystems as critical natural capital (Pauli, 2010; World Bank, 2021). In contrast, the circular economy emphasizes closing material loops by transforming waste into resources through reuse, recycling, remanufacturing, and eco-design (Ellen MacArthur Foundation, 2013). While the blue economy addresses sustainability within water-based ecosystems, the circular economy tackles inefficiencies in production and consumption systems, making the three paradigms collectively comprehensive in scope.

2.2 Mechanisms Linking Paradigms to Sustainability

The green, blue, and circular economy paradigms contribute to environmental sustainability through distinct but interrelated mechanisms that reduce ecological pressure while supporting economic activity. One key mechanism is resource efficiency, which underpins all three paradigms. Green economy strategies promote energy efficiency and renewable energy adoption, thereby reducing fossil fuel dependence and greenhouse gas emissions (OECD, 2022; IPCC, 2023). Similarly, circular economy practices reduce material extraction by extending product life cycles, while blue economy initiatives encourage sustainable harvesting of aquatic resources to prevent ecosystem depletion (Geissdoerfer et al., 2020; World Bank, 2021).

Another critical mechanism linking these paradigms to sustainability is pollution reduction and waste minimization. Circular economy approaches directly address waste generation by redesigning production systems to eliminate waste at source and promote recycling and recovery (Ghisellini et al., 2016; Korhonen et al., 2018). Green economy policies reduce air and water pollution through cleaner technologies, environmental regulations, and green procurement (UNEP, 2023). In the blue

economy context, pollution control mechanisms include marine litter reduction, wastewater management, and protection of coastal and freshwater ecosystems, which are essential for maintaining water quality and biodiversity (UNEP FI, 2021; Voyer et al., 2022). A further mechanism is ecosystem conservation and resilience building, which ensures the long-term sustainability of natural systems that support human livelihoods. Blue economy initiatives such as mangrove restoration, marine protected areas, and sustainable fisheries enhance ecosystem services and climate resilience, particularly in coastal regions (OECD, 2020; World Bank, 2017). Green economy investments in ecosystem restoration and nature-based solutions contribute to carbon sequestration and biodiversity conservation, while circular economy strategies reduce pressure on ecosystems by lowering demand for virgin resources (IPBES, 2023; World Economic Forum, 2023). Collectively, these mechanisms demonstrate how integrated application of the three paradigms can advance environmental sustainability in a systemic and durable manner.

2.3 Green Economy and Environmental Sustainability

The green economy is widely conceptualized as an economic system that improves human well-being and social equity while significantly reducing environmental risks and ecological scarcities. It emphasizes low-carbon development, efficient resource use, and environmental protection as pathways to sustainable development. According to the United Nations Environment Programme (UNEP, 2011, 2023), the green economy promotes investments in renewable energy, sustainable agriculture, green infrastructure, and ecosystem restoration, all of which are essential for addressing climate change and environmental degradation. This approach aligns closely with the Sustainable Development Goals (SDGs), particularly those related to climate action, clean energy, and responsible consumption (United Nations, 2015, 2023).

Empirical evidence suggests that green economy initiatives contribute positively to environmental sustainability by reducing greenhouse gas emissions and enhancing resource efficiency.

Studies have shown that countries adopting green growth strategies experience improvements in energy efficiency, air quality, and environmental performance indicators (OECD, 2022; Loiseau et al., 2021). Renewable energy deployment, for instance, has been identified as a critical driver of emission reductions and energy security, while green public procurement encourages environmentally responsible production and consumption patterns. These outcomes demonstrate that green economy policies can decouple economic growth from environmental degradation when supported by strong institutional frameworks.

However, the effectiveness of the green economy in promoting environmental sustainability is often constrained by structural and governance challenges. High initial investment costs, limited access to green finance, and weak policy enforcement have hindered large-scale implementation, particularly in developing economies (World Economic Forum, 2023; UNEP, 2023). Additionally, critics argue that green economy initiatives may insufficiently address issues of material consumption and waste generation if not complemented by circular economy principles. This underscores the need for integrated policy approaches that combine green growth strategies with broader sustainability frameworks.

2.4 Blue Economy and Environmental Sustainability

The blue economy refers to the sustainable use of oceanic and freshwater resources for economic growth, improved livelihoods, and ecosystem health. It encompasses sectors such as fisheries, aquaculture, marine transportation, tourism, and coastal ecosystem management, while emphasizing environmental stewardship and long-term ecological resilience (Pauli, 2010; World Bank, 2021). Given that aquatic ecosystems provide critical ecosystem services—including food provision, climate regulation, and biodiversity conservation the blue economy is increasingly recognized as a vital component of environmental sustainability (OECD, 2020).

Voyer et al., (2022) indicates that blue economy practices play a significant role in protecting

marine and freshwater ecosystems while supporting sustainable livelihoods. Sustainable fisheries management, marine protected areas, and coastal restoration initiatives have been shown to enhance biodiversity, rebuild fish stocks, and reduce marine pollution (UNEP FI, 2021). Furthermore, healthy aquatic ecosystems contribute to climate change mitigation and adaptation by acting as carbon sinks and buffering coastal communities against extreme weather events. These findings highlight the environmental benefits of integrating conservation objectives into blue economy development strategies.

Despite its potential, the implementation of blue economy initiatives faces considerable challenges. Weak governance structures, inadequate scientific data, and limited stakeholder participation often undermine sustainable management of aquatic resources, particularly in developing countries (World Bank, 2017; OECD, 2020). In addition, competing economic interests such as industrial fishing and coastal development can exacerbate ecosystem degradation if not properly regulated. As such, effective blue economy governance requires strong institutional capacity, integrated coastal zone management, and inclusive decision-making processes to ensure that economic activities do not compromise environmental sustainability.

2.5 Circular Economy and Environmental Sustainability

The circular economy represents a fundamental shift from traditional linear economic models toward systems that prioritize resource efficiency, waste reduction, and closed-loop material flows. Rooted in the concept of the performance economy (Stahel, 1998), the circular economy seeks to maintain the value of products, materials, and resources for as long as possible through reuse, recycling, remanufacturing, and eco-design. The Ellen MacArthur Foundation (2013) emphasizes that circular economy strategies are essential for addressing global challenges such as resource scarcity, pollution, and climate change.

Geissdoerfer et al. (2020) consistently demonstrate that circular economy practices

have strong and immediate positive impacts on environmental sustainability. Recycling and material recovery significantly reduce landfill waste, lower pollution levels, and decrease demand for virgin raw materials (Ghisellini et al., 2016). Moreover, circular business models contribute to reduced energy consumption and greenhouse gas emissions by minimizing resource extraction and production processes. These outcomes explain why the circular economy is often identified as one of the most effective strategies for achieving sustainable production and consumption.

Nevertheless, the transition to a circular economy is not without challenges. Institutional barriers, lack of technical capacity, limited market incentives, and insufficient consumer awareness can impede adoption, particularly in developing economies (Korhonen et al., 2018; World Economic Forum, 2020). Additionally, the circular economy requires systemic change across value chains, which can be difficult to achieve without coordinated policy frameworks and stakeholder collaboration. Despite these challenges, the circular economy remains a critical pillar of environmental sustainability, especially when integrated with green and blue economy approaches.

METHODOLOGY

This study adopted a mixed-methods cross-sectional research design, combining quantitative and qualitative approaches to provide a comprehensive assessment of the relationship between blue, green, and circular economies and environmental sustainability. The quantitative component involved the administration of structured questionnaires to 320 respondents drawn from government agencies, private-sector organizations, environmental NGOs, and local community leaders. Respondents were selected using purposive sampling to ensure representation of stakeholders actively involved in environmental management and sustainability initiatives.

The questionnaire measured the level of adoption of blue, green, and circular economy practices using Likert-scale items, as well as environmental sustainability indicators relating to waste management, water quality, air quality,

ecosystem conservation, and resource efficiency. A composite Environmental Sustainability Index (ESI) was developed to capture overall sustainability performance. Quantitative data were analyzed using descriptive statistics, Pearson correlation analysis, and multiple regression analysis to determine the predictive power of each economic paradigm. The qualitative component involved semi-structured interviews with 24 key informants, including senior policymakers, environmental experts, and industry practitioners. Interview data were analyzed thematically to identify perceived benefits, challenges, and enabling factors influencing implementation. Triangulation of survey results, interview findings, and policy document analysis enhanced the validity and reliability of the study.

RESULTS AND FINDINGS

This section presents the results of the study in line with the stated research objectives. Quantitative findings from the questionnaire survey are complemented with qualitative insights from key informant interviews to provide a robust understanding of how blue, green, and circular economy practices influence environmental sustainability.

Objective One: To assess the contribution of blue economy practices to environmental sustainability

The results indicate that blue economy practices make a statistically significant contribution to environmental sustainability. Descriptive analysis shows moderate adoption of blue economy initiatives, particularly in areas related to sustainable fisheries management, coastal ecosystem restoration, and water resource protection. Approximately 61% of respondents agreed or strongly agreed that blue economy practices have contributed to improved aquatic ecosystem health and reduced environmental degradation in coastal and inland water environments. Correlation analysis reveals a positive relationship between blue economy adoption and environmental sustainability indicators ($r = 0.31$, $p < 0.001$). Regression results further demonstrate that blue economy practices significantly predict environmental sustainability outcomes ($\beta = 0.12$, $p < 0.05$) after

controlling for institutional and demographic factors. Qualitative findings corroborate these results, with interview participants emphasizing that sustainable fishing practices, mangrove restoration, and improved water governance have enhanced biodiversity conservation and reduced pollution. However, respondents noted that the environmental benefits of blue economy initiatives tend to manifest gradually and are often constrained by weak regulatory enforcement and limited technical capacity.

Objective Two: To examine the influence of green economy initiatives on environmental sustainability

Findings reveal that green economy initiatives exert a strong and positive influence on environmental sustainability. Survey results show relatively higher adoption levels of green economy practices compared to blue economy initiatives, particularly in renewable energy deployment, energy efficiency measures, and environmentally responsible procurement. About 68% of respondents reported that green economy policies have led to measurable reductions in air pollution and energy consumption. Statistical analysis indicates a significant positive correlation between green economy initiatives and environmental sustainability ($r = 0.39$, $p < 0.001$). Regression analysis confirms that green economy practices are a significant predictor of environmental sustainability ($\beta = 0.19$, $p < 0.01$). Interview findings further highlight that investments in solar energy, energy-efficient technologies, and low-carbon infrastructure have reduced greenhouse gas emissions and operational costs. Nonetheless, respondents identified high initial capital costs and inconsistent policy implementation as key barriers limiting the full realization of green economy benefits.

Objective Three: To determine the relationship between circular economy practices and environmental sustainability

Results indicate that circular economy practices have the strongest relationship with environmental sustainability among the three paradigms examined. Descriptive statistics reveal growing adoption of circular economy practices, particularly in waste recycling, reuse,

composting, and material recovery initiatives. Approximately 74% of respondents agreed that circular economy practices have significantly improved waste management efficiency and reduced environmental pollution.

Correlation analysis shows a strong positive relationship between circular economy practices and environmental sustainability ($r = 0.48$, $p < 0.001$). Regression results demonstrate that circular economy adoption is the most influential predictor of environmental sustainability ($\beta = 0.34$, $p < 0.001$). Qualitative findings support these results, with stakeholders emphasizing that waste-to-resource initiatives, extended producer responsibility schemes, and community-based recycling programs have delivered immediate and visible environmental benefits. Participants noted that circular economy practices are particularly effective at the local level due to their direct impact on waste reduction and resource efficiency.

Objective Four: To compare the relative influence of blue, green, and circular economies on environmental sustainability

Comparative analysis reveals that while all three economic paradigms significantly contribute to environmental sustainability, their levels of influence differ. Circular economy practices exert the strongest effect, followed by green economy initiatives, with blue economy practices having the least though still significant impact. The final regression model explains approximately 36% of the variance in environmental sustainability outcomes, underscoring the combined explanatory power of the three paradigms. This ranking suggests that interventions targeting waste reduction and material efficiency yield more immediate environmental improvements, whereas green and blue economy initiatives often require longer time horizons and substantial institutional support to achieve comparable outcomes.

Objective Five: To identify institutional and contextual factors influencing effective implementation

Findings indicate that institutional support, policy coherence, and access to finance significantly influence the effectiveness of blue, green, and circular economy initiatives. Survey

results show that institutional support is positively associated with environmental sustainability outcomes ($\beta = 0.14$, $p < 0.01$). Interview respondents consistently emphasized that weak enforcement of environmental regulations, fragmented policy frameworks, and limited technical expertise undermine sustainability efforts. Additionally, public awareness and stakeholder participation emerged as critical contextual factors. Communities with higher levels of environmental awareness and participation demonstrated better sustainability outcomes. Respondents also highlighted the importance of public-private partnerships and capacity-building programs in enhancing the adoption and effectiveness of sustainability-oriented economic practices.

Summary of Key Findings

The key findings of the study can be summarized as follows:

- i. Blue economy practices significantly contribute to environmental sustainability, particularly through ecosystem conservation and water resource management, though their impacts are gradual.
- ii. Green economy initiatives have a strong positive influence on environmental sustainability by reducing emissions and promoting energy efficiency.
- iii. Circular economy practices have the strongest and most immediate impact on environmental sustainability, primarily through waste reduction and resource efficiency.
- iv. An integrated approach combining blue, green, and circular economy strategies yields the most robust sustainability outcomes.
- v. Institutional capacity, financing, policy coherence, and public awareness are critical determinants of successful implementation.

CONCLUSION AND RECOMMENDATION

Conclusion

The findings of this study demonstrate that blue, green, and circular economy frameworks collectively offer a viable pathway toward achieving environmental sustainability. Empirical evidence from both quantitative and qualitative analyses shows that all three paradigms contribute positively to sustainability outcomes, including improved resource efficiency, reduced pollution, enhanced waste management, and ecosystem conservation. Among the three, circular economy practices emerged as the most influential, largely due to their direct and immediate impact on waste reduction and material reuse. Green economy initiatives also showed strong effects through low-carbon development and energy efficiency, while blue economy practices contributed significantly by supporting aquatic ecosystem health and long-term environmental resilience.

The study further reveals that the effectiveness of these economic paradigms is not determined solely by their conceptual strengths but by the extent of their practical implementation and integration. Isolated or sector-specific interventions yield limited results, whereas coordinated strategies that align circular, green, and blue economy principles across policy, industry, and community levels generate more robust environmental outcomes. Institutional support, policy coherence, access to finance, and stakeholder participation were found to be critical enabling factors that determine the success or failure of sustainability-oriented economic transitions.

Overall, this research contributes to the growing body of empirical literature on sustainable development by providing evidence-based insights into the comparative and combined impacts of blue, green, and circular economies. By adopting an integrated approach, governments and stakeholders can move beyond fragmented sustainability initiatives toward systemic transformation that balances economic growth with environmental protection. The study therefore underscores the need for holistic, data-

driven strategies to advance environmental sustainability in developing and emerging economies.

Recommendations

Based on the findings of this study, it is recommended that policymakers prioritize the institutionalization of circular economy strategies as a core component of environmental sustainability planning. This includes investing in waste management infrastructure, promoting recycling and material recovery systems, and enforcing extended producer responsibility policies. Strengthening circular economy practices will help address pressing challenges such as urban waste accumulation, pollution, and inefficient resource use while delivering immediate environmental benefits at the local and national levels.

In addition, governments and development partners should scale up green economy initiatives by expanding investments in renewable energy, energy-efficient technologies, and environmentally responsible public procurement. Clear and consistent policy frameworks, supported by financial incentives such as tax rebates and green financing mechanisms, are essential for encouraging private-sector participation. Capacity-building programs should also be implemented to enhance technical expertise and ensure effective adoption of green technologies across sectors.

Furthermore, it is recommended that blue economy governance be strengthened through improved regulatory enforcement, scientific monitoring, and community engagement in marine and freshwater resource management. Integrated coastal zone management, sustainable fisheries practices, and ecosystem restoration initiatives should be supported through public-private partnerships and inclusive decision-making processes. Finally, public awareness campaigns and environmental education should be intensified to foster behavioral change and stakeholder ownership, ensuring the long-term sustainability of blue, green, and circular economy initiatives.

REFERENCES

Andersen, M. S. (2007). An introductory note on the environmental economics of the circular economy. *Sustainability Science*, 2(1), 133–140.

Bocken, N. M. P., de Pauw, I., Bakker, C., & van der Grinten, B. (2016). Product design and business model strategies for a circular economy. *Journal of Industrial and Production Engineering*, 33(5), 308–320.

Ellen MacArthur Foundation. (2013). *Towards the circular economy: Economic and business rationale for an accelerated transition*. Ellen MacArthur Foundation.

Ellen MacArthur Foundation. (2019). *Completing the picture: How the circular economy tackles climate change*. Ellen MacArthur Foundation.

Geissdoerfer, M., Savaget, P., Bocken, N. M. P., & Hultink, E. J. (2017). The circular economy; A new sustainability paradigm? *Journal of Cleaner Production*, 143, 757–768.

Geissdoerfer, M., Pieroni, M. P. P., Pigozzo, D. C. A., & Soufani, K. (2020). Circular business models: A review. *Journal of Cleaner Production*, 277, 123741.

Ghisellini, P., Cialani, C., & Ulgiati, S. (2016). A review on circular economy: The expected transition to a balanced interplay of environmental and economic systems. *Journal of Cleaner Production*, 114, 11–32.

International Monetary Fund. (2022). *Climate change and the green economy*. IMF Publishing.

Intergovernmental Panel on Climate Change (IPCC). (2023). *AR6 synthesis report: Climate change 2023*. IPCC.

Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES). (2023). *Global assessment report on biodiversity and ecosystem services*. IPBES.

Korhonen, J., Honkasalo, A., & Seppälä, J. (2018). Circular economy: The concept and its limitations. *Ecological Economics*, 143, 37–46.

Korhonen, J., Nuur, C., Feldmann, A., & Birkie, S. E. (2018). Circular economy as an essentially contested concept. *Journal of Cleaner Production*, 175, 544–552.

Loiseau, E., Saikku, L., Antikainen, R., Droste, N., Hansjürgens, B., Pitkänen, K., & Thomsen, M. (2021). Green economy and related concepts: An overview. *Journal of Cleaner Production*, 139, 361–371.

OECD. (2011). *Towards green growth*. OECD Publishing.

OECD. (2020). *Sustainable ocean economy framework*. OECD Publishing.

OECD. (2022). *Inclusive green growth for the future*. OECD Publishing.

Pauli, G. (2010). *The blue economy: 10 years, 100 innovations, 100 million jobs*. Paradigm Publications.

Pearce, D., Markandya, A., & Barbier, E. (1989). *Blueprint for a green economy*. Earthscan.

Schroeder, P., Anggraeni, K., & Weber, U. (2019). The relevance of circular economy practices to the sustainable development goals. *Journal of Industrial Ecology*, 23(1), 77–95.

Stahel, W. R. (1998). *The performance economy*. Palgrave Macmillan.

United Nations. (2015). *Transforming our world: The 2030 agenda for sustainable development*. United Nations.

United Nations. (2023). *The Sustainable*

Development Goals report 2023. United Nations.

United Nations Environment Programme (UNEP). (2011). *Towards a green economy: Pathways to sustainable development and poverty eradication.* UNEP.

United Nations Environment Programme (UNEP). (2023). *Green economy and sustainable development.* UNEP.

United Nations Environment Programme Finance Initiative (UNEP FI). (2021). *Financing a*

sustainable ocean economy. UNEP FI.

Voyer, M., Quirk, G., McIlgorm, A., & Azmi, K. (2022). Shaping the future of blue economy governance. *Marine Policy, 135, 104–118.*

World Bank. (2017). *The potential of the blue economy.* World Bank.

World Bank. (2021). *The blue economy development framework.* World Bank.

World Economic Forum. (2020). *The circular economy action agenda.* WEF.

World Economic Forum. (2023). *Nature and the green economy.* WEF.

