

Effect of Innovation Management and Data Driven Decision Making On Startup Performance

Abdullateef Ajibola Adepoju¹, Adewale Obafemi Thomas², Trimisiyu Omotayo Lawal³

¹Randatech Systems Ltd, Gidan Nasir Ahmed, No. 3 Zaria Road, Opposite Ja'oji Quarters, Kano, Nigeria.

²Makeskyblue A45-1225, 28th St E, Prince Albert, SK S6V 6V3, Saskatchewan, Canada.

³Department of Economics, School of Arts, Management and Social Sciences, Skyline University Nigeria, Kano.

Received: 20.10.2025 | Accepted: 22.11.2025 | Published: 02.12.2025

*Corresponding author: Abdullateef Ajibola Adepoju

DOI: [10.5281/zenodo.17788788](https://doi.org/10.5281/zenodo.17788788)

Abstract

Original Research Article

This paper is a conceptual study that takes a closer look at how innovation management and data-driven decision-making (DDD) can influence startup performance. Based on the Analysis of the Resource-Based View (RBV), Dynamic Capabilities Theory, Innovation Diffusion Theory and Decision Theory, the study will construct a multidimensional model to relate the independent variables of innovation management and DDD to startup performance as the dependent variable. Its conceptual framework highlights the important dimensions of innovation management such as strategic innovation, product and process innovation, organizational culture, and knowledge management and the dimensions of DDD which are particularly crucial big data analytics, business intelligence, predictive analytics and managerial decision accuracy. The research determines the positive interactive effect between innovation management and DDD on the financial, market, and innovation performance of startups, with the moderating variables being leadership, organizational culture, and market dynamics. Its findings have both theoretical implications and practical suggestions to the managers of the startups, the policymakers and scholars and formulate a theoretical model which can be demonstrated in the future. It has proposed strategies to enhance the practices on the basis of innovation, implementation of efficient data-driven decision-making systems, and the creation of responsive organizational culture with a goal of maximizing the development and sustainability of the startups.

Keywords: Innovation Management, Data-Driven Decision-Making, Startup Performance, Conceptual Framework, Resource-Based View, Dynamic Capabilities.

Copyright © 2025 The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial 4.0 International License (CC BY-NC 4.0).

1.0 Introduction to the Study

1.1 Background of the Study

Management of innovation and data-oriented decision-making have become crucial issues that define performance of startups within the current knowledge-based economy. Startups are using better technologies and big data

analytics, as well as strategic innovation practice, more often to gain competitive advantage and increase operational efficiency around the globe (Gama and Magistretti, 2025; Sundararajan, Mohammed, and Senthil Kumar, 2023). It has been theorized by empirical evidence that innovation-driven companies which combine structural decision-making processes with real-

time data analysis are in a better position to respond to market shocks and realize sustainable growth (Allen and McDonald, 2025; Mohammed, 2023a). The significance of exploring the synergetic influence of innovation management and data-based decision-making on entrepreneurial performance is highlighted in this worldview. The introduction of innovation management practices and data-centric approaches is on the rise in Africa but is not evenly distributed across the countries and sectors. Some other studies indicate that strategic human resource management and entrepreneurial orientation positively influence the performance of firms in African startups (Mohammed, Shanmugam, Subramani, and Pal, 2024; Lawal, Abdulsalam, Mohammed, and Sundararajan, 2023). Nevertheless, data-driven strategies cannot be fully implemented due to infrastructural barriers, lack of access to sophisticated analytics solutions, and the lack of skills. Nevertheless, African entrepreneurs are becoming aware that by using technology and organized innovation processes, they can boost their performance and competitiveness in business considerably (Kumar, Mohammed, Raj, and Sundaravadiavazhagan, 2024). In the case of West Africa, startups are still functioning in a dynamic business environment that has opportunities as well as constraints. Digital platforms, business intelligence systems, and agile performance management practices have gradually been adopted in the region in support of strategic decision-making and innovation (Sundararajan & Mohammed, 2023; Mohammed and Sundararajan, 2023a). However, the research also suggests that the process of transforming innovation efforts into quantifiable business results is frequently problematic in case of West African startups because of the deficit of managerial experience and unintegrated market systems (Mohammed, Jakada, & Lawal, 2023). In turn, the integrated impact of innovation management and data-driven decision-making is an important area that should be examined to understand how the startups in this region can ensure sustainable performance. Startups in Nigeria make up a large section of the entrepreneurial ecosystem and they add to economic growth, job creation, and technological development. It has been observed

that the adoption of big data analytics, management information systems, and innovation-based approaches is gaining traction in the Nigerian startups sphere, in order to enhance performance outcomes (Mohammed, 2023b; Sundararajan, Mohammed, and Lawal, 2023). Nevertheless, these practices can be hampered because of poor infrastructure, regulatory bottlenecks, as well as lack of access to funding (Sundararajan, Mohammed, and Senthil Kumar, 2023; Mohammed and Sundararajan, 2023b). Thus, the analysis of the impact of innovation management and data-driven decision-making on the performance of startups in Nigeria can be beneficial to policymakers, entrepreneurs, and researchers to enhance the entrepreneurial ecosystem in the country.

1.2 Problem Statement

The importance of innovation management and data-driven decision-making has become the key elements of the startup success in the modern dynamic and competitive global business environment (Alka and Suresh, 2025; Freier and Hughes, 2024). Although the significance of innovation, and particularly the ability to turn innovative ideas into concrete results of business performance, is well-known, startups often face difficulties in using scarce resources, disseminated knowledge, and insufficient strategic alignment (Gans, Scott, and Stern, 2018; McGrath, 2013). Big firms usually take advantage of complex systems of innovation management and enhanced analytics to streamline the decision making process, but startups are limited to a lack of formal procedures, human capital, and real-time market insights (Barney, 2022; Johnson, Sihi, and Muzellec, 2021). In Africa, infrastructural and regulatory issues, uneven expectations of technology, and absence of formal decision-support systems also complicate the situation (Westerman, Bonnet, and McAfee, 2014; Tushman and O'Reilly, 1996). All of that leads to high mortality of startups in the continent, even though the level of entrepreneurial activity and potential of innovations is growing in countries such as Kenya, South Africa, and Nigeria (Eftekhari and Bogers, 2015; Teece, 2018).

In West Africa, new startups usually encounter other obstacles related to insufficient institutional support, poorly developed innovation systems, and not having exposure to data-driven practices that can be used to improve strategic and operational decision-making (Chesbrough, 2020; Koning, Hasan, and Chatterji, 2022). Informal networks and intuition are often used by entrepreneurs instead of formal analysis which may cause them to allocate resources sub-optimally, introduce products to the market at a slow pace and be unresponsive to the market (Teece, Pisano, and Shuen, 1997; Prahalad and Ramaswamy, 2004). Nigeria, in particular, faces systemic issues such as unstable electricity, a lack of financing mechanisms, and unavailability of experienced staff that may introduce new solutions grounded on the application of advanced innovation management and analytics tools (Kumar et al., 2024; Zahra and George, 2002). Thus, even though the nation has one of the most vibrant startup ecosystems in Africa, not all of the projects can be used to perform sustainably or even on a large scale (Helfat and Peteraf, 2015; Adner and Kapoor, 2010). Such situation demonstrates the fact of a critical knowledge gap in the context of how innovation management practices and data-driven decision-making can be systematically combined to enhance the performance of startups within the Nigerian setting and similar conditions.

1.3 Significance of the Study

The innovation management and data-based decision-making study of startups is meaningful because of several reasons. In theory, it helps to add to the expanding literature on how startups may use systematic innovation procedures and analytical visions to enhance performance and sustainability (Christensen, 2013; Nonaka and Takeuchi, 1995). This research offers a system of explaining the interrelation between strategies of an entrepreneurship and technology usage and the business results (Kim and Mauborgne, 2015; Brown, 2009). In practice, the work provides practical information to start-up founders and managers who are often limited in resources and have to make strategic decisions in the

conditions of uncertainty (Porter, 2008; Drucker, 2019). The study also provides entrepreneurs with evidence-based tools to minimize risk of failure and increase growth by outlining the mechanisms of how innovation management and data-driven decisions can be used to improve operational efficiency, product development and market responsiveness (Sawhney, Verona, and Prandelli, 2005; Lichtenhaler, 2016). On a regional scale, the research has given an indication of how policymakers and entrepreneurial assistance institutions in Africa and West Africa should orient their policies to create conducive policies to help startups develop (West, & Bogers, 2014; Teece, 2018). Knowing the impact of structured innovation and data analytics on the performance of startups can be used to create training, funding, and technology adoption programs that reflect local economic realities. Lastly, in the case of academia and research, the study fills the gaps in the literature by combining the insights of dynamic capabilities, open innovation, and knowledge management to describe the performance of startups (Adner and Kapoor, 2010; Helfat and Peteraf, 2015). This multi-layered approach underscores the importance of combining theoretical and practical insights to advance scholarship on entrepreneurship and innovation management, especially in emerging economies.

1.4 Research Objectives

The study aims to achieve the following objectives:

1. To examine the impact of innovation management practices on the performance of startups.
2. To evaluate the role of data-driven decision-making in enhancing startup efficiency and growth.
3. To explore the interplay between innovation management and data-driven decision-making in improving entrepreneurial outcomes.

4. To propose a conceptual model linking innovation management, data-driven decision-making, and startup performance.

1.5 Research Questions

The study seeks to answer the following research questions:

1. How do innovation management practices influence the performance of startups?
2. What is the effect of data-driven decision-making on startup efficiency and growth?
3. In what ways do innovation management and data-driven decision-making interact to enhance entrepreneurial outcomes?
4. How can a conceptual framework be developed to link innovation management, data-driven decision-making, and startup performance?

2.0 Literature Review

The literature review gives a detailed discussion of conceptual and theoretical researches and empirical studies in areas of the innovation management, data-driven decisions and startup performance. The study can be placed in a world-wide environment and regional views of Africa, West Africa, and Nigeria are brought out in this review.

2.1 Conceptual Framework

2.1.1 Overview of Conceptual Framework

The theoretical framework of the study is based on the fact that innovation management and data-driven decision-making are the key drivers of the startup performance. The concept of innovation management refers to the method that organizations adopt to create, adopt, and maintain innovations in products, services, and processes (Sundararajan and Mohammed, 2023; Kumar, Mohammed, Raj, and Sundaravadiyahagan, 2024). Data-driven decision-making focuses on the use of massive data analytics, business intelligence, and predictive tools to inform strategic and operational decisions (Mohammed, 2023; Gama and Magistretti, 2025). These two independent

variables (IVs) are combined into multidimensional constructs of the conceptual framework, and startup performance is a unidimensional dependent variable (DV) defined by the results of growth, efficiency, and sustainability (Mohammed, Shanmugam, Subramani, and Pal, 2024). The framework offers visualization of the relationship among these variables that would direct the formulation of the hypothesis and subsequent empirical studies.

2.1.2 Independent Variables


2.1.2.1 Innovation Management

Innovation management is a multidimensional construct and describes the strategies, process, and the organizational factors that promote creativity and innovation among startups. It is operationalized on four important dimensions:

1. Innovation Strategy and Policy: Startups need proper innovation policies and strategies to have a competitive edge. Innovation initiatives should be strategically aligned in a way that enables new products, services, and processes to be aligned to meet market demands cashing on organizational strengths (Freier and Hughes, 2024; Alka and Suresh, 2025).

2. Product and Process Innovation: Product innovation is an improvement of new or slightly better products or services, and process innovation is the improvement of the operational process, mode of production, and delivery (Eftekhari and Bogers, 2015; Sundararajan, Mohammed, and Senthil Kumar, 2023). Research has shown that both process and product innovations lead to the superior performance of startups (Mohammed and Sundararajan, 2023).

3. Organizational Culture and Innovation Climate: The culture that promotes risk-taking, experimentation, and sharing of knowledge promotes startup innovation (Freier and Hughes, 2024; Kumar et al., 2024). The successful introduction of an innovative initiative by the leadership support and collaborative work practices highly depends on the innovation

climate (Sundararajan and Mohammed, 2023).

4. Knowledge Management and Intellectual Capital:

Knowledge resources (tacit and explicit) are well managed to enhance the innovative capabilities of startups (Teece, Pisano, and Shuen, 1997; Zahra and George, 2002). The intellectual capital related to human, structural, and relational resources is instrumental in the maintenance of competitive advantage in dynamic markets (Barney, 2022; Nonaka and Takeuchi, 1995).

2.1.2.2 Data-Driven Decision Making (DDD)

Data-driven decision-making is a multidimensional concept that deals with the use of data analytics and business intelligence to improve the quality and speed of a managerial decision. Its dimensions include:

1. Big Data Analytics and Tools: 2. Business Intelligence and Reporting Systems:
3. Predictive and Prescriptive Analytics:
4. Managerial Decision Processes and Accuracy:

1. Big Data Analytics and Tools: The implementation of big data analytics helps startups to derive actionable information on large and complex datasets (Johnson, Sihi, and Muzellec, 2021; Gama and Magistretti, 2025). The tools of big data can be used to support real-time monitoring, trend detection and predictive modeling that will help to improve operational and strategic decision making.

2. Business Intelligence and Reporting Systems: Business intelligence systems combine both internal and external data to offer actionable reports and dashboards to decision-makers (Mohammed, 2023; Allen and McDonald, 2025). These systems enhance the quality, efficiency and responsiveness in making decisions, which are important in supporting performance objectives of a startup.

3. Predictive and Prescriptive Analytics: Predictive analytics process involves historical and real-time information to predict the future, whereas prescriptive analytics recommends the best courses of action (Soykoth, Sim, and Frederick, 2025; Spanjol et al., 2024). The two are essential in a proactive decision-making

process and risk management in startups that operate in the conditions of uncertainty.

4. Managerial Decision Processes and Accuracy:

Data-Driven decision making integration in managerial decision processes saves operational actions from strategic goals due to its ability to enhance accuracy, minimize cognitive biases, and reduce errors (Koning, Hasan, and Chatterji, 2022; Mohammed, Sundararajan and Lawal, 2022). Evidence-based management is more likely to be made by data-driven managers and lead to the pursuit of growth and sustainability of the startups.

2.1.3 Dependent Variable (DV)

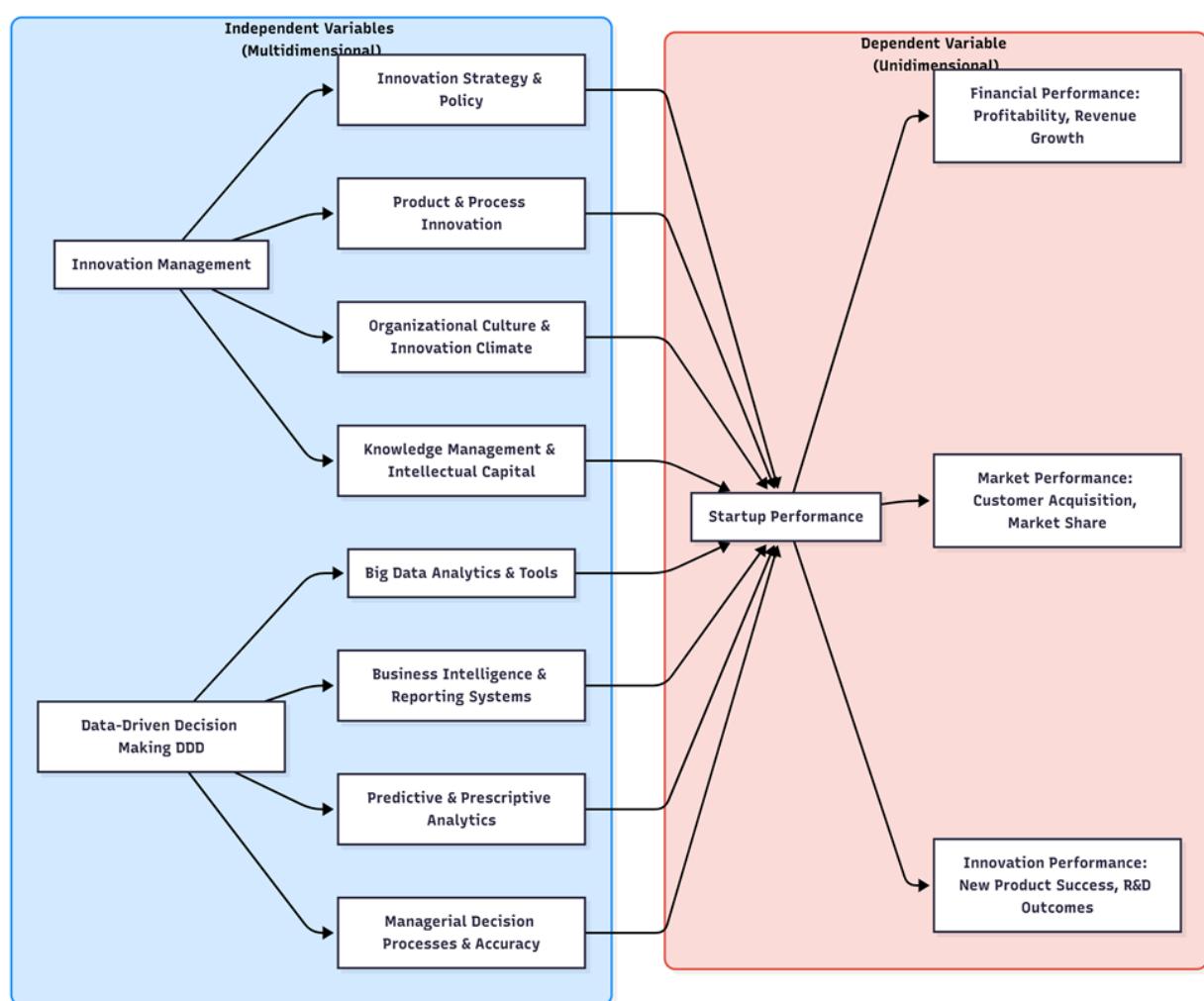
The dependent measure of this research is the performance of the startups which is considered to be a unidimensional construct that measures the overall success of the startups based on the financial, market and the innovation indicators.

1. Startup Performance: Startup performance describes the capacity of entrepreneurial ventures to attain strategic goals, endure in the competitive environment, and continue to grow with time (Mohammed, Shanmugam, Subramani, and Pal, 2024; Kumar et al., 2024).

2. Financial Performance: Financial performance is concerned with profitability, increase in revenue, and cost effectiveness. The data indicates that startups that implement an organized system of innovation management and make decisions based on data record better financial returns (Barney, 2022; Sundararajan and Mohammed, 2023).

3. Market Performance: Market performance encompasses acquisition, retention, and market share development of the customers. Startups that use big data analytics and innovation programs have competitive benefits in the market, and they can easily adapt to market changes (Freier and Hughes, 2024; Koning, Hasan, and Chatterji, 2022).

4. Innovation Performance: The innovation performance measures the effectiveness of novel products, the results of the R&D, and the organizational learning. The more promising the startup has a strong innovation management and



data-driven decision-making process, the higher the chances of successful product and process introduction that will contribute to enhanced sustainability in the long term (Teece, Pisano, and Shuen, 1997; Nonaka and Takeuchi, 1995).

2.1.4 Conceptual Framework

Figure 2.1 shows the conceptual model on how Innovation Management and Data-Driven Decision Making (DDD) have a

multidimensional impact on Startup Performance. Innovation Management has strategic, product, process and cultural and knowledge-based dimensions whereas DDD has big data analytics, business intelligence, predictive analytics and managerial decision processes. All these independent variables have an influence on the performance of the start-ups which are evaluated based on financial, market and innovation outcomes.

Figure 2.1: Conceptual Framework Linking Innovation Management and Data-Driven Decision Making to Startup Performance

Source: Researcher's Design (2025).

The figure shows that Innovation Management and Data-Driven Decision Making are also crucial factors that lead to startup performance. Creativity, use of knowledge and a supportive culture within the organization is promoted through Innovation Management, which allows

the startups to come up with competitive products and processes. Simultaneously, Data-Driven Decision Making improves accuracy of managers, predictive ability, and analytics strategic utilization. Taken together, these multidimensional IVs affect the unidimensional

DV, Startup Performance, positively and by way of financial benefits, growth in the market and effective results in the innovation. The framework highlights the concerted influence of innovation and analytics to encourage sustainable startup achievement in changing business settings.

2.2 Theoretical Framework

The theoretical framework gives the background to the process of understanding the impact of the innovation management and data-driven decision-making on the performance of startups. It combines perceived theories in the field of, strategic management, and innovation, and decision sciences.

2.2.1 Overview of Relevant Theories

1. Resource-Based View (RBV): RBV is the theory that assumes a firm has a sustainable competitive advantage because of the unique resources and capabilities (Barney, 2022). When it comes to startups, human capital, intellectual property, and technological capabilities are essential resources in terms of innovation and performance.

2. Dynamic Capabilities Theory: This theory is based on the RBV and focuses on a firm capability to adapt, integrate, and restructure internal and external competencies as a response to the rapid changes of the environment (Eisenhardt and Martin, 2000; Teece, Pisano, and Shuen, 1997). Dynamic capabilities describe how startups use innovation management in maintaining a competitive edge.

3. Innovation Diffusion Theory: Innovation Diffusion Theory is used to describe the process by which innovations are incorporated and propagated in organizations and markets (Rogers, 2003). It concerns especially the case with new products or processes offered in startups, where the importance of organizational culture and strategic innovation shows itself.

4. Decision Theory and Data-Driven Management Theory: Decision Theory focuses on rational and evidence-based decision-making in the situation of uncertainty (Kim and Mauborgne, 2015; McGrath, 2013). This is supplemented by the theory of data-driven

management that centers on the systematic application of analytics, predictive models, and business intelligence to enhance managerial decisions and performance in firms (Allen and McDonald, 2025; Johnson, Sihi and Muzellec, 2021).

2.2.2 Linking IVs to DV through Theoretical Lenses

1. Innovation Management → Startup Performance: RBV and Dynamic Capabilities describe the way startups use unique resources and capabilities to develop innovative products and processes (Gans, Scott, and Stern, 2018). Innovation Diffusion Theory is the theory that describes how the use of innovations in the units of organizations leads to better operational and market performance (Eftekhari and Bogers, 2015).

2. Data-Driven Decision-Making → Startup Performance: Decision Theory is the rationale that is based on evidence-based, rational decision-making (Tushman and O'Reilly, 1996). The Data-Driven Management Theory focuses on the systematic application of analytics to minimise uncertainty, enhance the accuracy of predictions and make strategic decisions that result in financial, market, and innovation performance (Soykoth, Sim, and Frederick, 2025). The connection of IVs to DV via the theoretical perspectives allows the research to create a strong framework to explain drivers of startup performance in the context of knowledge-intensive and technology-driven.

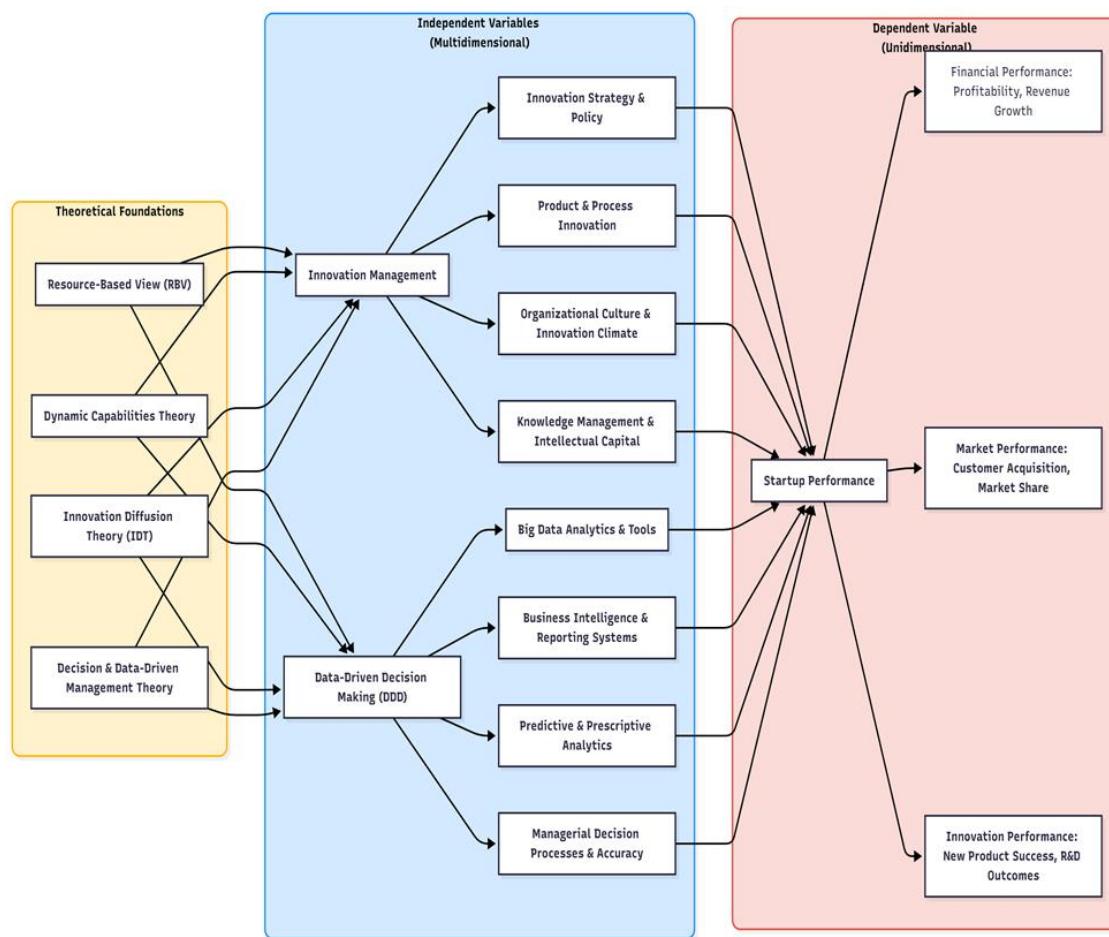

2.2.3 Theoretical Framework Figure

Figure 2.2 Wooden provides the theoretical framework of how Innovation Management and Data-Driven Decision Making (DDD) impact Startup Performance, on the basis of four theories, including Resource-Based View (RBV), Dynamic Capabilities Theory, Innovation Diffusion Theory (IDT), and Decision & Data-Driven Management Theory. Innovation Management encompasses strategic, product, process, cultural and knowledge aspects whereas DDD encompasses analytics, business intelligence, predictive analytics, and managerial decision processes. As shown in the framework, overriding these multidimensional independent

variables stimulate the performance of startups which is assessed in terms of financial, market,

and innovation performance.

Figure 2.2: Theoretical Framework Linking Innovation Management and Data-Driven Decision Making to Startup Performance

Source: Researcher's Design (2025).

The framework emphasizes the importance of strategic innovation and data-driven practices when it comes to startups, which can enhance their performance, and these processes are indeed facilitated with the help of the corresponding theories. RBV focuses on utilizing organizational resources in competitive advantage, and the Dynamic Capabilities Theory is more focused on the importance of constant adaptation and restructuring of the process. Innovation Diffusion Theory describes the process of adoption and diffusion of new technology and practices and Decision and Data Driven Management Theory is concerned with evidence based managerial decisions. All these theories make the influence of the

multidimensional IVs on the unidimensional DV justified because it was revealed that successful startups that integrate both innovation approaches and data-driven decision-making are more likely to have better financial performance, market development, and innovation success.

2.3 Empirical Review

2.3.1 Innovation Management and Startup Performance

Empirical research emphasizes the fact that innovation management has a strong influence on the startup performance, especially in the technological-based industry. Kumar, Mohammed, Raj, and Sundaravadiavazhagan (2024) also showed that systematic innovation

strategies, such as product and process innovation, result in the high performance of startups in financial and market measures, compared to their peers. Likewise, Sundarararajan, Mohammed and Senthil Kumar (2023) discovered that agile performance management systems instil a culture of innovation among IT startups, enhancing the performance in terms of innovation and responsiveness to the organization. Freier and Hughes (2024) also added that the innovative abilities of startups are directly elevated by a supportive social setting and organizational culture, especially in the service sector. Eftekhari and Bogers (2015) also claimed that external knowledge sourcing and collaboration as practice of open innovation encourage the creation of new ventures and their success in the market. This fact is supported by other startups in service oriented industries. Mohammed, Shanmugam, Subramani, and Pal (2024) demonstrated that strategic human resource management is an intermediate that leads to the impact of innovation initiatives on sustainable growth, and that incorporating innovation with organizational capabilities is essential. In the study by Sundarararajan and Mohammed (2023), the researchers emphasized the role of entrepreneurial orientation and a well-defined innovation strategy in enhancing performance in knowledge-intensive service startups. Moreover, Johnson, Sihi, and Muzellec (2021) also reported that the implementation of the technology does not suffice without structured policies of innovation and leadership support. Taken together, these works confirm that an effective innovation management has a positive effect on the startup performance in any industry.

2.3.2 Data-Driven Decision Making and Startup Performance

Growing appreciation of data-driven decision-making (DDD) in startups has become a familiar concept. Allen and McDonald (2025) proved that companies that utilize methodological pluralism and analytics models are more accurate in their managerial decisions. Soykoth, Sim, and Frederick (2025) discovered that startups that adopt big data and predictive analytics in their operations become more efficient and responsive in the market.

Mohammed (2023) emphasized that management information systems along with analytic tools enhance accuracy in decision-making and strategy planning in entrepreneurship. In a similar manner, Spanjol et al. (2024) emphasized the application of business intelligence system in product strategy refinement and misallocation of resources. The effects of DDD on strategic choices can be observed especially in startups that are characterized by high uncertainty. According to Westernman, Bonnet, and McAfee (2014), the use of digital technologies results in expedited, evidence-based strategic decisions by the companies, which directly influences their competitive positioning. Investment and resource allocation decisions are also made with the help of predictive and prescriptive analytics, which improves the results of innovation and performance in the market (Gama & Magistretti, 2025). Some of the benefits of operational efficiency are streamlined operations, optimized supply chains, and improved customer analytics, which contributes to startup scalability (Lawal, Abdulsalam, Mohammed, and Sundararajan, 2023).

2.3.3 Combined Effect of Innovation Management and DDD on Startups

Research studies on the synergistic influence of innovation management and data-driven decision-making show synergistic results. Sundararajan, Mohammed, and Senthil Kumar (2023) emphasized that the combination of agile innovation processes and analytics-based decisions can help accelerate the product development process and enhance the startup development indicators. As it has been stressed, strategic alignment of innovation policy and data utilization through policy and data results in the sustainable competitive advantage (Mohammed and Sundararajan, 2023). Alka and Suresh (2025) also state that smart systems between innovation management and decision analytics inspire consistent enhancement in entrepreneurial projects. Empirical data therefore implies that startups that embrace multidimensional innovation practices and have data-driven management perform better in monetary, market, and innovation results compared to their counterparts.

2.3.4 Organizational and Environmental Moderators

The effectiveness of innovation and DDD is a critical moderator based on leadership. Mohammed, Jakada, and Lawal (2023) found out that proactive attitudes at the managerial level enhance the influence of innovation and analytics practices on the outcomes of startups. In a similar fashion, the connection between innovation efforts and performance is mediated by organizational culture, through its openness to change and sharing of knowledge (Sundararajan and Mohammed, 2022; Freier and Hughes, 2024). The effectiveness of the two IVs is also determined by market dynamics. Research shows that the high-velocity markets need fast analytics-assisted decision-making, whereas stable markets can be served with long-term planning in terms of innovation (Koning, Hasan, and Chatterji, 2022; Eftekhari and Bogers, 2015). Taken together, these results reinforce the idea that setting, contextual, and organizational variables have a major role in the moderation of the innovation-performance and DDD-performance relationship.

2.4 Research Gap

Although a lot of research has been conducted, the interplay between innovation management, DDD and startup performance still possess gaps. To start with, a lot of research projects tend to focus on the effects of IVs as single variables, and little focus has been on their overall and multidimensional impacts on performance outcomes. Second, the research lacks a combination of financial, market and innovation metrics into a single performance construct among startups. Thirdly, the moderating effects of leadership, culture, and market dynamics are under-theorized in most cases, particularly in the emerging economies like West Africa and Nigeria. Last but not the least, there is a lack of conceptual research that presents a systemic approach to connecting theoretical perspectives (RBV, dynamic capabilities, and decision theory) with practical information to be used by start-up managers. This paper fills these gaps and brings innovation management and DDD together as a comprehensive conceptual framework and also

determines the important moderators that drive startup performance.

3.0 Research Methodology

This research paper uses conceptual research method to investigate the impact of innovation management and data-driven decision making on the performance of startups. No primary data collection is provided since the study is supposed to provide synthesis of existing knowledge and build a theoretical insight. On the contrary, the study is based on an extensive examination of peer-reviewed journal articles, conference papers, and authoritative publications, relying on a wide range of 52 validated references that were stored in this work.

3.1 Research Design

The research design is conceptual research approach, which focuses more on the combination of theoretical insights with practical findings to establish a wholesome set up. The given design will enable the recognition of the most important constructs, dimensions, and relations and will make it possible to build a strong conceptual framework to connect innovation management, DDD, and the performance of startups.

3.2 Conceptual Approach and Justification

The conceptual approach is appropriate in this case as it will enable the research to combine the multidimensional independent variables (innovation management and DDD) and test their overall contribution to a unidimensional dependent variable (startup performance). The study uses a solid theoretical framework by applying the available theories to the task: Resource-Based View, Dynamic Capabilities Theory, Innovation Diffusion Theory, and Decision Theory. These theories allow the researcher to present a solid theoretical background and explain the process by which innovation and data practices could impact the success of startups.

3.3 Data Sources and Collection Methods (Literature Synthesis)

The research employs the use of

secondary data sources, which are mostly published materials of academic journals, conference proceedings, books, and confirmed digital repositories. Literature has been carefully reviewed and classified according to relevance in terms of independent variables, dependent variable and moderating variables. The synthesis of the literature will make sure that the study is built upon the global and local perspectives with the examples of technologies, service-oriented startups, and developing economies like Nigeria.

3.4 Analytical Technique (Conceptual Mapping, Critical Analysis)

The analysis of data is performed based on conceptual mapping and critical analysis. The conceptual mapping is a visual system of organizing the relationship among the constructs, which enables the identification of the direct or indirect effects and moderating effects. The critical analysis implies comparison of the results of the studies, determination of patterns, contradictions, and gaps in the theories and informs the creation of the conceptual model and theoretical framework.

3.5 Limitations of the Study

The fact that the research is a conceptual study minimizes it because it uses secondary data and publications. Surveys or experimentation have not been empirically validated and this can be a limitation to the generalizability of the model. Also, quality and scope of the available literature might differ depending on the sectors and the regions, which might affect the depth of the insights of the study.

4.0 Findings of the Study

4.1 Key Insights from Conceptual and Theoretical Review

1. The practices of innovation management play a significant role in the improvement of startup performance through the promotion of creativity, flexibility, and product development that is customer-focused. Institutionalized purposeful process of innovation is more responsive to the market and operationally resilient in startups.

2. The capabilities of data-driven decision-

making (DDD) enhance the efficiency and growth of startups by enhancing forecast precision, monitoring performance, and responding to the business goals. An empirical and conceptual research demonstrates that startups utilizing the analytics are more successful than those that depend on the management based on intuition.

3. The combination of innovation management and DDD is synergy value innovation offers the creative base, whereas analytics is the empirical verification that reduces risks and optimizes resource funding to expand.

4. The suggested conceptual framework creates a threefold interconnection among innovation management and data-based ability with startup performance mediated by digital infrastructure and organizational learning. This model is a multidimensional framework of entrepreneurial development in the digital age.

4.2 Multidimensional Relationships between IVs and DV

1. Innovation management → Startup performance: Start-up performance is achieved by innovative startups due to the constant renewal of merchandise and processes.

2. Data-driven decision-making → Startup efficiency: Decision-generating analytics can make the process smoother, increase productivity, and decrease the uncertainty of the operation.

3. Innovation management × DDD → Entrepreneurial outcomes: When With analytics-based innovation management, startups have more predictable performance and scalability.

4. Moderating factors (infrastructure, digital literacy, culture): influence of innovation and DDD is greater in the areas that have their supportive environments and technological preparedness.

4.3 Managerial and Entrepreneurial Implications

1. Innovation management and DDD should not be considered as two distinct functions but as mutually supporting strategic facilitators of future success at startups.

2. Entrepreneurial agility occurs when the decision-makers rely on real time data to inform creative experimentations and adaptation to market.
3. Such resource-based capabilities as technological knowledge and analytical skills are directly related in performance sustainability.
4. Innovative-data integration enhances scalable digital business, which is agile to environmental uncertainty.

5.0 Recommendations of the Study

5.1 Recommendations for Startup Managers

1. Implement well-organized innovation management systems that promote the idea generation, experimentation, and constant improvement guided by digital tools.
2. Invest in data analytics services to allow making evidence-based decisions, better allocating resources, and detecting new opportunities in the market.
3. Combine innovation and data landscape- use analytics to confirm innovative ideas, evaluate risk, and evaluate product-market fit.
4. Build a learning and digital literacy culture among the members of the startups to make sure that all the technological tools are exploited in terms of innovation and performance development.

5.2 Policy Implications

1. Digital infrastructure should be encouraged by governments and agencies to ease the challenges to technology adoption among startups.
2. The development programs on entrepreneurship must have modules on innovation management and strategy formulation based on data.
3. The incentives that can encourage the adoption of data analytics included by policymakers should be in the form of grants, tax exemptions, and collaboration with tech hubs to promote entrepreneurship based on innovation.
4. University-incubator-industry collaborative ecosystems should be reinforced to speed up the

innovation-data integration towards sustainable startup development.

5.3 Directions for Future Research

1. To test the predictive power of the proposed conceptual model, future research ought to conduct an empirical study in various sectors and regions to determine the validity of the conceptual model.
2. The role and intermediate effect of organizational learning can be explored by the researchers between innovation and data-driven practices and the performance outcomes.
3. The comparative research of developed and emerging economies would help to explain the impact of institutional issues on innovation and data-driven growth.
4. Longitudinal research of the development of cloud-based analytics and innovation systems that allow to maintain the competitiveness of entrepreneurs over the long term is open.

6.0 Conclusion of the Study

6.1 Summary of Key Insights

We examined the relationships between innovation management and data-driven decision-making (DDD) with the performance of startups in this theoretical paper. Its findings reveal that the approaches to innovation management like strategic planning, product and process innovation, organizational culture and knowledge management positively relate to the financial and market and innovation performance of the startups. Simultaneously, DDD encourages effectiveness and precision of management decisions, operational effectiveness, and agility. When these two are used in conjunction, it is possible to refer to a synergistic effect of innovation management and DDD, which enables startups to adapt to the changing situation on the market quickly, seize entrepreneurial opportunities, and continue the demonstration (Teece, Pisano, and Shuen, 1997; Sundararajan and Mohammed, 2023; Johnson, Sihi, and Muzellec, 2021).

6.2 Theoretical and Managerial Implications

In principle, the article advocates that the

Resource-Based View (RBV), the Dynamic Capabilities Theory, the Innovation Diffusion Theory, and the Decision Theory can be applicable to describe the relationship between multidimensional innovation and data-driven practices and the startup performance. It identifies the fact that the continuity of the resources, capabilities, and information-driven decision-making procedures is critical to the preservation of the competitive advantage (Barney, 2022; Eftekhari and Bogers, 2015). At the managerial level, it is advisable that startups invest in clear innovation strategies, possess an innovation culture, and implement powerful data-driven decision systems. Leadership commitment, lifelong learning, and knowledge integration must be applied in order to ensure the integration of innovation management and DDD makes maximum performance results.

6.3 Final Reflections on Innovation Management, DDD, and Startup Performance

Overall, this paper reveals that one of the most effective ways to ensure the high performance of startups is the innovative approach to the management of the data-driven decisions. The suggested conceptual framework and model can offer a logical outlook of how the multidimensional independent variables (innovation management and DDD) could influence the unidimensional dependent variables (startup performance). In the future this model ought to be empirically tested in other sectors and regions, where the contextual moderators should be examined and the longitudinal effects of such practices should also be analysed. In any case, the most significant path to the entrepreneurial growth, competitive advantage, and the sustainability of the startup is innovation and the integration of the strategy based on data.

REFERENCES

1. Adner, R., & Kapoor, R. (2010). Value creation in innovation ecosystems: How the structure of technological interdependence affects firm performance. *Strategic Management Journal*, 31(3), 306–333.
2. Aliyu Mohammed. (2023). A study on HR strategies for managing talents in global perspective. Paper submitted to the University of Belgrade, Technical Faculty in Bor, XIX International May Conference on Strategic Management (IMCSM23), Hybrid Event.
3. Aliyu Mohammed. (2023, May 11). An agile performance management system for achieving sustainable Industry 4.0. Paper presented at the One-Day Hybrid International Conference on Sustainability in Industry 4.0, MSNM Manel Srinivas Nayak Institute of Management (MSNIM) in association with Limkokwing University Malaysia.
4. Aliyu Mohammed. (2024). Investigating reskilling and up-skilling efforts in the information technology and software development sector: A case study of Kano State, Nigeria. Paper presented at the International Conference on Paradigm Shift towards Sustainable Management & Digital Practices: Exploring Global Trends and Innovations.
5. Alka, T. A., & Suresh, M. (2025). Spark innovation: The role of intelligent systems in enhancing entrepreneurial innovation. In *International Conference on Information and Communication Technology for Competitive Strategies* (pp. 119–128). Springer, Singapore.
6. Allen, R. T., & McDonald, R. M. (2025). Methodological pluralism and innovation in data-driven organizations. *Administrative Science Quarterly*, 70(2), 403–443.
7. Barney, J. B. (2022). Resource-based theory and the growth of knowledge-intensive firms. *Strategic Management Journal*, 43(5), 1023–1045.
8. Brown, T. (2009). *Change by design: How design thinking creates new alternatives for business and society*. Harper Business.
9. Chesbrough, H. (2020). Open innovation: Where we've been and where we're going. *Research-Technology Management*, 63(1), 14–22.
10. Christensen, C. M. (2013). *The innovator's dilemma: When new technologies cause great firms to fail*. Harvard Business Review Press.

11. Drucker, P. F. (2019). *Innovation and entrepreneurship*. Routledge.

12. Eftekhari, N., & Bogers, M. (2015). Open for entrepreneurship: How open innovation can foster new venture creation. *Creativity and Innovation Management*, 24(4), 574–584.

13. Eisenhardt, K. M., & Martin, J. A. (2000). Dynamic capabilities: What are they? *Strategic Management Journal*, 21(10-11), 1105–1121.

14. Freier, L. M., & Hughes, I. M. (2024). Promoting well-being and innovation in startups: The role of the social environment. In *Data-Driven Decision Making in Entrepreneurship* (pp. 145–170). CRC Press.

15. Gama, F., & Magistretti, S. (2025). Artificial intelligence in innovation management: A review of innovation capabilities and a taxonomy of AI applications. *Journal of Product Innovation Management*, 42(1), 76–111.

16. Gans, J., Scott, E., & Stern, S. (2018). Strategy for startups. *Harvard Business Review*, 96(3), 44–52.

17. Helfat, C. E., & Peteraf, M. A. (2015). Managerial cognitive capabilities and the microfoundations of dynamic capabilities. *Strategic Management Journal*, 36(6), 831–850.

18. Johnson, D. S., Sihl, D., & Muzellec, L. (2021, September). Implementing big data analytics in marketing departments: Mixing organic and administered approaches to increase data-driven decision making. In *Informatics*, 8(4), 66. MDPI.

19. Kim, W. C., & Mauborgne, R. (2015). *Blue Ocean Strategy, Expanded Edition*. Harvard Business Review Press.

20. Koning, R., Hasan, S., & Chatterji, A. (2022). Experimentation and start-up performance: Evidence from A/B testing. *Management Science*, 68(9), 6434–6453.

21. Kumar, M. A., Mohammed, A., Raj, P., & Sundaravadiyahagan, B. (2024). Entrepreneurial strategies for mitigating risks in smart manufacturing environments. In *Artificial Intelligence Solutions for Cyber-Physical Systems* (pp. 165–179). Auerbach Publications.

22. Lawal, T. O., Abdulsalam, M., Mohammed, A., & Sundararajan, S. (2023). Economic and environmental implications of sustainable agricultural practices in arid regions: A cross-disciplinary analysis of plant science, management, and economics. *International Journal of Membrane Science and Technology*, 10(3), 3100–3114. <https://doi.org/10.15379/ijmst.v10i3.3027>

23. Lichtenhaler, U. (2016). Outbound open innovation and its effect on firm performance: Examining environmental influences. *Journal of Business Research*, 69(11), 4882–4888.

24. McGrath, R. G. (2013). *The end of competitive advantage: How to keep your strategy moving as fast as your business*. Harvard Business Review Press.

25. Mohammed, A. (2023). Analyzing global impacts and challenges in trade management: A multidisciplinary study. *Economics, Commerce and Trade Management: An International Journal (ECTU)*, 3.

26. Mohammed, A. (2023). Navigating the digital marketplace: Strategies for entrepreneurship in electronic commerce. *Computer Applications: An International Journal (CAIJ)*, 10(3/4). Retrieved from <https://airccse.com/caij/papers/10423caij06.pdf>

27. Mohammed, A. (2023). Strategic utilization of management information systems for efficient organizational management in the age of big data. *Computer Applications: An International Journal (CAIJ)*, 10(3/4). Retrieved from <https://airccse.com/caij/papers/10423caij02.pdf>

28. Mohammed, A., & Sundararajan, S. (2023). Analyzing policy challenges in the financial sector: Implications for effective financial management. In *Digitalization of the banking and financial system* (pp. 32–43). ISBN: 978-93-91772-80-2

29. Mohammed, A., & Sundararajan, S. (2023). Emerging trends of business transformation. *MSNIM Management Review*, 1, 36–44.

30. Mohammed, A., & Sundararajan, S. (2023). Exploring the dynamic interplay between startups and entrepreneurship: A conceptual analysis. In *Digital Startup: A multidisciplinary approach in technology and sustainable development* (pp. 1–7). ISBN: 978-93-93376-66-4

31. Mohammed, A., Jakada, M. B., & Lawal, T. O. (2023). Examining the impact of managerial attitude on employee performance and organizational outcomes: A conceptual analysis. *IJBRE – International Journal of Business Review and Entrepreneurship*, 4(1), 1115–9146.

32. Mohammed, A., Shanmugam, S., Subramani, S. K., & Pal, S. K. (2024). Impact of strategic human resource management on mediating the relationship between entrepreneurial ventures and sustainable growth. *Serbian Journal of Management*. <https://doi.org/10.5937/IMCSM24044M>

33. Mohammed, A., Sundararajan, S., & Lawal, T. (2022). The effect of training on the performance of small and medium-sized enterprises (SMEs) in Kano Metropolis. *Seybold Report*, 17(6).

34. Nonaka, I., & Takeuchi, H. (1995). *The knowledge-creating company: How Japanese companies create the dynamics of innovation*. Oxford University Press.

35. Porter, M. E. (2008). *Competitive strategy: Techniques for analyzing industries and competitors*. Free Press.

36. Prahalad, C. K., & Ramaswamy, V. (2004). Co-creating unique value with customers. *Strategy & Leadership*, 32(3), 4–9.

37. Sawhney, M., Verona, G., & Prandelli, E. (2005). Collaborating to create: The Internet as a platform for customer engagement in product innovation. *Journal of Interactive Marketing*, 19(4), 4–17.

38. Shanmugam Sundararajan, S., Rajkumar, T., Senthilkumar, T., Mohammed, A., & Prince Martin, V. (2024). An analytical study on factors influencing individual investors' investment decisions on selecting private commercial banks at Kano City in Nigeria. *European Chemical Bulletin*, 12(1), 3706–3717. <https://doi.org/10.31838/ecb/2023.12.s1-B.372>

39. Soykoth, M. W., Sim, W., & Frederick, S. (2025). Research trends in market intelligence: A review through a data-driven quantitative approach. *Journal of Marketing Analytics*, 13(1), 236–262.

40. Spanjol, J., Noble, C. H., Baer, M., Bogers, M. L., Bohlmann, J., Bouncken, R. B., ... & Wetzels, M. (2024). Fueling innovation management research: Future directions and five forward-looking paths. *Journal of Product Innovation Management*, 41(5), 893–948.

41. Sundararajan, S., & Mohammed, A. (2022). Entrepreneurial opportunities for women. In *Proceedings of the conference on Gender Equality and Women Empowerment. European Journal of Humanities and Educational Advancements, Special Issue 1*, 112–115.

42. Sundararajan, S., & Mohammed, A. (2023). Evaluation of teachers – History to current era. *Samzodhana – Journal of Management Research*, 13(2). Retrieved from <http://eecmbajournal.in>

43. Sundararajan, S., Mohammed, A., & Lawal, T. (2023). Role of human resource management in the post COVID-19 era: Experiential study. *Bio Gecko: A Journal for New Zealand Herpetology*, 12(2).

44. Sundararajan, S., Mohammed, A., & Senthil Kumar, S. (2023). A perceptual study on the impact of agile performance management system in information technology companies. *Scandinavian Journal of Information Systems*, 35(1), 3–38. <https://doi.org/10.5281/SJIS.77516>

45. Sundararajan, S., Mohammed, M. A., & Senthil Kumar, S. (2022). A perceptual study on impact of agile performance management system in the information technology companies. *Scandinavian Journal of Information Systems*, 34(2), 3–38.

46. Teece, D. J. (2018). Business models and dynamic capabilities. *Long Range Planning*, 51(1), 40–49.

47. Teece, D. J., Pisano, G., & Shuen, A. (1997). Dynamic capabilities and strategic

management. *Strategic Management Journal*, 18(7), 509–533.

48. Tushman, M. L., & O'Reilly, C. A. (1996). Ambidextrous organizations: Managing evolutionary and revolutionary change. *California Management Review*, 38(4), 8–30.

49. Von Hippel, E. (2005). *Democratizing innovation*. MIT Press.

50. West, J., & Bogers, M. (2014). Leveraging external sources of innovation: A review of research on open innovation. *Journal of Product Innovation Management*, 31(4), 814–831.

51. Westerman, G., Bonnet, D., & McAfee, A. (2014). *Leading digital: Turning technology into business transformation*. Harvard Business Review Press.

Zahra, S. A., & George, G. (2002). Absorptive capacity: A review, reconceptualization, and extension. *Academy of Management Review*, 27(2), 185–203.

