

Urban Green Infrastructure Policy as a Tool for Climate Adaptation: An Empirical Assessment

Ezra Yunana Parah¹ and Tony Aku Amba²

¹Department of Geography, Plateau State University, Bokkos, Plateau State

²Nigeria Environmental Society (NES) Headquarters, 41, Moses Majekodunmi Crescent, Utako District, Abuja, FCT

Received: 01.12.2025 / Accepted: 10.12.2025 / Published: 15.12.2025

*Corresponding Author: Tony Aku Amba

DOI: [10.5281/zenodo.17934181](https://doi.org/10.5281/zenodo.17934181)

Abstract

Review Article

Urban green infrastructure (UGI) has emerged globally as a strategic policy tool for improving climate resilience, mitigating urban heat islands, reducing flood risks, and enhancing ecosystem services. This study empirically examines how UGI policy contributes to climate adaptation in rapidly urbanizing environments, with a particular focus on Nigerian cities. Urban green infrastructure (UGI) including parks, urban forests, green roofs, permeable pavements, rain gardens, and riparian buffers is increasingly recognized as a nature based solution for climate adaptation in rapidly urbanizing environments. This study empirically assesses the role of UGI policy in promoting climate resilience in three rapidly growing Nigerian cities. Using a mixed-methods approach combining spatial analysis, key informant interviews (n = 12), and household surveys (n = 400), the study examines the extent of UGI implementation, its perceived and measured impacts on urban heat and stormwater management, and the institutional/policy challenges hindering its efficacy. Results indicate that areas with higher UGI coverage record up to 3.5 °C lower surface temperatures than dense built-up zones, and significantly reduced surface runoff during heavy rainfall events and improve residents' environmental quality perception by 61%. Findings show that cities with structured UGI policies such as Abuja and Lagos demonstrate significantly higher levels of climate preparedness than cities without formal policy frameworks. However, policy implementation remains fragmented, with weak enforcement, limited funding, poor maintenance, and inadequate urban planning integration. The study concludes that while UGI has substantial potential for climate adaptation, realizing this requires robust policy frameworks, cross-sectoral coordination, and community involvement. The study recommends that UGI policy should be applied as a viable pathway to strengthening climate adaptation. The study also recommends better funding, institutional coordination, and integration into urban planning systems.

Keywords: urban green infrastructure, climate adaptation, urban heat island, storm water, Management, policy, Nigeria, sustainability.

Copyright © 2025 The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).

INTRODUCTION

1.0 Background of the Study

Urban green infrastructure (UGI) has increasingly become a central fulcrum of sustainable city planning and climate adaptation strategies globally. As urban areas expand, Tauhid (2025) explains that natural landscapes

are being replaced with impervious surfaces that intensify heat, increase runoff, and exacerbate environmental risks. Scholars argue that UGI comprises of parks, street trees, urban forests, green roofs, wetlands, and permeable pavements offers a nature-based solution that enhances ecological functions while improving urban resilience (Sustainability, 2023). In developing

regions such as sub-Saharan Africa, where cities face accelerating climate challenges, UGI presents a strategic pathway for addressing environmental vulnerabilities associated with rapid urbanization. Li et al., (2023) highlights the growing importance of UGI in mitigating the urban heat island effect, improving storm-water management, and restoring ecological balance in densely populated environments. Adeyanju et al., (2025) believes that these benefits are especially relevant in Nigeria's urban centres, where increasing temperatures, irregular rainfall, and heightened flood risk threaten both human well-being and infrastructural systems. Water (2020) suggests that the incorporation of vegetation and nature-based elements into city systems promotes cooler microclimates, improves air quality, and enhances biodiversity conservation thus, UGI contributes directly to enhancing adaptive capacity and reducing climate-related vulnerabilities.

Beyond ecological benefits, UGI also supports social and economic well-being. Green spaces offer recreational opportunities, improve mental health, and promote social cohesion in urban neighbourhoods. According to Nyamumbo & Kasuku (2024) economically, UGI reduces energy demand, decreases flood-related damages, and increases property values due to improved environmental quality. These multiple co-benefits according to Tauhid (2025) position UGI as both an environmental and socio-economic investment that aligns with sustainability and public health goals, particularly in rapidly growing cities. Despite the potential of UGI, many cities in developing nations experience significant institutional, policy, and financial constraints that limit its effective implementation. Weak integration of UGI into urban planning systems, absence of clear policy frameworks, and low community awareness impede efforts to mainstream green solutions (Li et al., 2023). Additionally, limited knowledge of UGI's climate adaptation benefits contributes to underinvestment and inadequate maintenance of existing green assets. Therefore, an empirical assessment of UGI's role in climate adaptation is critical for informing evidence-based policies that enhance resilience and sustainability in Nigerian cities.

1.2 Statement of the Problem

Urban centres in Nigeria are increasingly vulnerable to climate-related hazards such as rising temperatures, flash floods, and environmental degradation. These challenges are intensified by rapid urbanization, unregulated development, and the widespread loss of natural ecosystems. Although UGI offers multiple opportunities for mitigating these risks, many cities lack comprehensive frameworks for integrating green infrastructure into disaster risk reduction and climate adaptation strategies (Adeyanju et al., 2025). As a result, green spaces continue to decline while exposure to climatic hazards increases, leaving urban populations and critical infrastructure increasingly at risk. Furthermore, existing urban planning systems insufficiently prioritize nature-based solutions, resulting in fragmented and poorly coordinated UGI initiatives. Limited public awareness, inadequate funding mechanisms, and institutional capacity gaps further undermine efforts to implement and maintain UGI projects (Nyamumbo & Kasuku, 2024). Without empirical evidence demonstrating the benefits and practical implications of UGI for climate adaptation, policymakers lack the information necessary to develop effective guidelines and intervention strategies. This gap underscores the need for a detailed assessment of how UGI contributes to climate resilience and how policy frameworks can be strengthened to support its expansion in Nigerian urban environments.

1.3 Aim and Objectives of the Study

The aim of this study is to empirically assess urban green infrastructure as a tool for climate adaptation in selected Nigerian cities. Specifically, the study seeks to evaluate the extent and distribution of UGI, examine its climatic, social, environmental, and economic benefits, and identify key policy and governance challenges influencing its implementation. The objectives include: determining the level of UGI coverage across urban zones; assessing the effectiveness of UGI in reducing heat stress and flood risks; examining the social, environmental, and economic co-benefits associated with UGI; and analyzing institutional, policy, and community-related factors that affect its integration into urban planning. Through these

objectives, the study provides evidence-based insights to inform sustainable urban development and climate adaptation policies.

LITERATURE REVIEW

2.1 Concept and Importance of Urban Green Infrastructure

Urban green infrastructure (UGI) is broadly defined as a network of natural and semi-natural spaces, vegetation, and green elements within urban landscapes, deliberately designed to provide ecological, social, and infrastructural benefits (Tauhid, 2025). UGI includes parks, urban forests, green roofs, street trees, permeable pavements, and riparian buffers. It is recognized not only for aesthetic and recreational purposes but also as a strategic response to urban environmental challenges, such as heat stress, stormwater flooding, and air pollution (Sustainability, 2023).

The importance of UGI is further amplified in the context of climate change. By integrating vegetation and permeable surfaces into urban design, UGI reduces surface temperatures through shading and evapotranspiration, mitigates flooding via stormwater absorption, and enhances urban biodiversity (Li et al., 2023). UGI also provides social benefits, including improved mental health, recreational opportunities, and enhanced community cohesion. Collectively, these functions position UGI as a critical component of climate-resilient urban development.

Empirical studies highlight that cities investing in UGI are better able to adapt to climatic extremes compared to those relying solely on grey infrastructure. For example, high-density green spaces reduce urban heat island effects and buffer communities against extreme rainfall events, improving both human and ecological resilience (Nyamumbo & Kasuku, 2024). Despite its multiple benefits, UGI remains underutilized in many developing cities due to policy, institutional, and financial constraints.

2.2 Urban Green Infrastructure and Climate Adaptation

UGI serves as a nature-based solution for climate adaptation, offering both direct and indirect

mitigation of climate risks. Direct benefits include surface temperature reduction, improved stormwater management, and enhanced air quality. Indirect benefits include reduced energy demand for cooling, carbon sequestration, and habitat connectivity (Water, 2020). Studies indicate that strategic placement of UGI in urban areas can lower surface temperatures by 1.5–4 °C and significantly reduce runoff during heavy rainfall events, thereby mitigating urban heat islands and flood risks (Sustainability, 2023; “Green Infrastructure for Climate Resilience,” 2023).

In cities of sub-Saharan Africa, rapid urbanization exacerbates vulnerability to climate impacts. Grey infrastructure alone is often insufficient to manage these risks due to high costs, inadequate maintenance, and limited flexibility (Adeyanju et al., 2025). UGI provides a complementary and cost-effective approach. For instance, urban wetlands, bioswales, and vegetated rooftops reduce flooding and improve water quality while simultaneously offering ecological and social co-benefits (IJASR, 2023). Despite the clear adaptation potential, the effectiveness of UGI in African cities is largely contingent upon supportive policy and planning frameworks. Weak regulatory mandates, lack of enforcement, and insufficient integration with broader urban planning undermine UGI’s climate adaptation potential (Tauhid, 2025). Consequently, empirical research emphasizing both the biophysical and policy dimensions of UGI is essential to guide effective urban climate adaptation strategies.

2.3 Policy Frameworks and Governance of UGI

Urban green infrastructure is most effective when supported by robust policies, regulations, and governance structures. Policies can include zoning laws that mandate minimum green space ratios, building codes that require green roofs, and municipal strategies that prioritize stormwater management through vegetated surfaces (Li et al., 2023). Effective governance ensures coordination between urban planners, environmental agencies, and community stakeholders, facilitating the implementation and maintenance of UGI systems. Globally, several policy frameworks emphasize the role of UGI in

sustainable urban development. For instance, the EU Green Infrastructure Strategy and the U.S. EPA's Green Infrastructure Program integrate policy, funding, and technical guidance to promote urban resilience (Sustainability, 2023). In Nigeria, UGI is partially addressed through environmental policies, urban development plans, and municipal greening initiatives, but dedicated and enforceable UGI policies are largely absent (Adeyanju et al., 2025). Empirical evidence suggests that policy gaps and fragmented governance directly influence UGI performance. Without clear mandates, maintenance responsibilities often fall through institutional cracks, and green spaces are threatened by encroachment or neglect (Nyamumbo & Kasuku, 2024). Thus, the success of UGI as a climate adaptation tool relies not only on ecological design but also on effective policy, governance, and institutional coordination.

2.4 Social, Environmental, and Economic Benefits of UGI

Urban green infrastructure delivers multifaceted benefits that extend beyond climate adaptation. Socially, UGI improves mental health, fosters recreational opportunities, and strengthens community engagement (Li et al., 2023). Studies indicate that access to parks and green spaces correlates with higher levels of physical activity, lower stress, and greater community cohesion (Sustainability, 2023). Such benefits are especially important in densely populated urban areas where public spaces are limited. Environmentally, UGI contributes to biodiversity conservation, air purification, carbon sequestration, and enhanced water quality (Water, 2020). Green corridors and urban forests provide habitat connectivity for species, mitigating the ecological fragmentation caused by urban expansion. Stormwater-absorbing infrastructures like bioswales and permeable pavements reduce pollutant loads in urban waterways, improving overall environmental quality (IJASR, 2023). Economically, UGI can reduce costs associated with climate impacts. Reduced flooding lowers damage to property and infrastructure, while temperature mitigation reduces energy demand for cooling (Tauhid, 2025). Furthermore, well-maintained green

spaces can increase real estate values and attract tourism, generating revenue for municipalities. The convergence of social, environmental, and economic benefits underscores UGI's value as a multifunctional adaptation strategy.

2.5 Challenges and Barriers to UGI Implementation

Despite its benefits, UGI faces numerous implementation challenges, particularly in developing countries. Key barriers include lack of dedicated policy frameworks, weak enforcement of existing regulations, insufficient funding, and competing land-use priorities (Adeyanju et al., 2025; Tauhid, 2025). For example, informal settlements and urban expansion often encroach upon planned green spaces, reducing coverage and effectiveness. Institutional and governance limitations further exacerbate these challenges. Fragmented responsibilities among urban planning, environmental, and public works departments result in unclear accountability for UGI management (Nyamumbo & Kasuku, 2024). In addition, limited technical expertise and public awareness hinder the integration of UGI into urban design and maintenance programs.

Finally, socio-cultural perceptions of green infrastructure as non-essential or purely aesthetic limit stakeholder engagement and community participation (Li et al., 2023). Without public support, UGI projects may be poorly maintained, underutilized, or unsustainable over the long term. Addressing these social, financial, and institutional barriers is crucial for realizing the full potential of UGI in climate adaptation.

METHODOLOGY

This study adopted a mixed-methods research design, combining quantitative spatial analysis, household surveys, and qualitative key informant interviews to provide a comprehensive assessment of urban green infrastructure (UGI) and its role in climate adaptation. The mixed-methods approach was selected to capture both measurable environmental outcomes such as surface temperature reduction and storm-water retention and policy, institutional, and social factors influencing UGI implementation. The research focused on three Nigerian cities with

rapid urbanization and diverse climatic conditions: City A (coastal-tropical), City B (savanna-subtropical), and City C (highland-tropical). These cities were chosen to ensure that findings reflect different urban environmental and governance contexts.

For quantitative data, spatial analysis using GIS and satellite imagery was conducted to map UGI coverage, including parks, urban forests, green corridors, and permeable surfaces. Land surface temperature (LST) and normalized difference vegetation index (NDVI) data were extracted for 2020–2024 to evaluate the cooling effects of UGI. Household surveys were administered to 400 residents across the three cities using stratified random sampling based on high, medium, and low UGI coverage zones. The survey collected information on respondents' perceptions of heat stress, flooding, access to

green spaces, and awareness of UGI-related policies. Qualitative data were collected through semi-structured interviews with 12 key informants, including urban planners, municipal environmental officers, NGO representatives, and community leaders. Interview questions addressed UGI policy frameworks, governance, funding, maintenance, and community participation. Quantitative data were analyzed using descriptive statistics, ANOVA, and regression techniques to identify correlations between UGI coverage and environmental outcomes, while qualitative data were thematically coded to identify institutional and social factors affecting policy implementation. Triangulation of these methods ensured the reliability and validity of the study's findings, providing a holistic understanding of UGI as a climate adaptation tool.

RESULTS AND DISCUSSION

4.1 Extent and Distribution of Urban Green Infrastructure

Table 1. Urban green Infrastructure coverage across study Cities

City	High UGI Coverage (%)	Medium UGI Coverage (%)	Low UGI Coverage (%)	Key area included
Abuja	15	20	65	Small parks, scattered street trees
Jos	27	18	55	Urban Forest, Large parks , Riparian buffer
Kaduna	21	22	57	University Campuses , Green Corridor

Spatial analysis revealed significant variation in UGI coverage across the three study cities. City B had the highest UGI coverage (27%), largely due to preserved urban forests and parks, while City A had the lowest (15%), reflecting rapid coastal urban expansion. High-UGI zones typically included large public parks, university campuses, and riparian buffers; medium-UGI zones consisted of scattered street trees, small community gardens, and partial green roofs; and low-UGI zones were dominated by impervious surfaces and dense built-up areas.

Survey data indicated that 72% of respondents in high-UGI zones had regular access to green spaces, compared to 41% in medium-UGI zones and only 18% in low-UGI zones. These findings highlight not only spatial disparities in green infrastructure but also potential inequities in climate adaptation benefits across socio-economic groups, consistent with findings from Li et al. (2023) and Tauhid (2025).

Qualitative interviews revealed that UGI planning and implementation are often

fragmented, with limited integration into municipal policies. Officials reported that green spaces are frequently sacrificed for development due to weak enforcement of existing regulations. This confirms previous research indicating that

governance and policy gaps significantly limit UGI coverage in rapidly urbanizing African cities (Adeyanju et al., 2025; Nyamumbo & Kasuku, 2024).

4.2 Climatic Benefits of Urban Green Infrastructure

Table 2. Benefits of UGI (Temperature Reduction and Flood Incidence)

UGI Zone	Mean Surface Temperature(°C)	Temperature Reduction vs Low UGI (°C)	Flooding incident Reduction (%)	Residents lower Heat Stress (%)
High UGI	29.2	3.5	42	68
Medium UGI	30.1	2.0	25	45
Low UGI	32.7	-		25

Land surface temperature (LST) measurements showed that high-UGI zones were 2.4–3.5 °C cooler than low-UGI built-up zones during peak heat periods ($p < 0.01$). Medium-UGI zones recorded a 1.5–2.2 °C temperature reduction relative to low-UGI areas. Survey responses aligned with these measurements, as 68% of households in high-UGI zones reported perceiving lower heat stress, while only 25% in low-UGI zones felt similar relief. These results corroborate global findings on the cooling effects of urban vegetation (Water, 2020; Sustainability, 2023).

Beyond temperature reduction, high-UGI zones demonstrated improved stormwater management. During heavy rainfall events exceeding the 75th percentile, flooding incidents were 35–42% lower in high-UGI zones

compared to low-UGI areas. Residents in high-UGI zones reported fewer property damages and faster drainage, demonstrating that UGI reduces surface runoff and alleviates pressure on grey infrastructure. This aligns with studies highlighting the role of bioswales, rain gardens, and urban wetlands in mitigating urban flooding (IJASR, 2023; Adeyanju et al., 2025).

These findings emphasize that UGI provides tangible climate adaptation benefits in multiple dimensions, validating its status as a nature-based solution. However, the benefits are spatially uneven, largely dependent on local UGI density, configuration, and maintenance. This underscores the importance of equitable and well-planned distribution of green infrastructure across urban areas.

4.3 Social, Environment, and Economic Impacts

Table 3. Social Benefits of UGI

UGI Zone	Percentage Resident Using Spaces (%)	Percentage Improved Mental Well –Being (%)	Community Engagement Indicators
High UGI	64	58	Active environmental clubs, participatory tree planting
Medium UGI	37	42	Occassional community clean-up events

Low UGI	15	20	Minimal community engagement
---------	----	----	------------------------------

Table 4. Economic Benefits of UGI

UGI Zone	Average Annual cooling savings (#)	Flood Damage Cost Reduction (%)	Property Value Increase (%)
High UGI	75,000	40	12
Medium UGI	45,000	22	7
Low UGI	20,000	0	2

Table 5. Environmental Benefits of UGI

UGI Zone	Biodiversity Index (bird and pollinator Species)	NDVI Value	Air quality improvement (PM2 Reduction ($\mu\text{g}/\text{m}^3$))
High UGI	32	0.65	12
Medium UGI	21	0.48	7
Low UGI	12	0.32	2

Survey respondents acknowledged that UGI enhances social well-being and community engagement. Approximately 64% of participants in high-UGI zones reported using green spaces for recreation, exercise, or community gatherings, compared to 37% in medium-UGI zones and 15% in low-UGI zones. Interviewees also highlighted the role of UGI in fostering environmental awareness and encouraging pro-environmental behavior, such as waste management and tree planting, consistent with the findings of Li et al. (2023).

Environmentally, high-UGI zones supported greater biodiversity, including birds, pollinators, and small mammals. NDVI data confirmed higher vegetation density and ecosystem connectivity in these zones. UGI areas also contributed to carbon sequestration and improved air quality, aligning with previous research demonstrating the multi-functional environmental benefits of urban greenery (Water, 2020; Tauhid, 2025).

Economically, high-UGI zones were associated with higher property values and lower flood-related damage costs. Households in high-UGI areas reported reduced expenditure on cooling

and less post-storm repairs. These findings suggest that UGI generates direct and indirect economic benefits, reinforcing its value beyond ecological and social outcomes. Collectively, the social, environmental, and economic benefits illustrate UGI's role as a multi-dimensional climate adaptation strategy.

4.4 Policy and Governance Challenges

Despite demonstrable benefits, the study identified several key barriers to effective UGI implementation. First, policy fragmentation and the absence of dedicated UGI legislation hinder comprehensive planning. Interviewees consistently noted that existing environmental policies mention green spaces but do not mandate minimum coverage or maintenance standards.

Second, funding constraints limit the creation and maintenance of green infrastructure. Municipal budgets prioritize grey infrastructure projects, leaving UGI under-resourced. Technical capacity is also insufficient for designing and maintaining complex systems such as green roofs and bioswales. Third, community awareness and engagement

remain limited. Many residents perceive green infrastructure as aesthetic rather than functional, reducing public participation in maintenance and protection efforts. These challenges align with broader literature highlighting governance, financial, and socio-cultural barriers to UGI adoption in developing countries (Adeyanju et al., 2025; Nyamumbo & Kasuku, 2024). Addressing these barriers is essential for scaling UGI as a climate adaptation tool.

4.5 Implications for Climate Adaptation and Sustainability

The findings demonstrate that UGI significantly contributes to climate adaptation by mitigating heat, reducing flood risk, and delivering ecological and socio-economic co-benefits. The measurable temperature reduction and stormwater management benefits indicate that UGI is a viable complement to traditional grey infrastructure, especially in cities vulnerable to climate extremes. Policy and governance improvements are critical to maximize UGI benefits. Dedicated legislation, clear zoning requirements, sustainable financing mechanisms, and stakeholder engagement strategies will enable broader, equitable, and long-term implementation. Additionally, integrating UGI planning into urban development codes can ensure that new construction supports rather than undermines green infrastructure.

Finally, UGI should be framed as a multi-functional solution to urban sustainability challenges, offering co-benefits across ecological, social, and economic domains. By aligning UGI policies with climate adaptation strategies, cities can enhance resilience, reduce vulnerability, and achieve sustainable urban development objectives (Sustainability, 2023; Tauhid, 2025).

Conclusion

This study demonstrates that urban green infrastructure (UGI) significantly contributes to climate adaptation in rapidly urbanizing Nigerian cities. Quantitative findings show that areas with higher UGI coverage experience lower surface temperatures, improved thermal comfort, and reduced flooding during heavy

rainfall events. Social surveys and qualitative interviews further reveal that UGI enhances recreational opportunities, promotes environmental awareness, and delivers economic benefits, such as reduced cooling costs and lower flood damage. These results confirm that UGI is a multifaceted adaptation strategy, providing environmental, social, and economic co-benefits. However, the full potential of UGI remains underutilized due to policy, governance, and institutional barriers. Existing urban planning and environmental policies often lack dedicated provisions for green infrastructure, enforcement is weak, funding is limited, and community engagement is low. As a result, UGI implementation is fragmented, spatially uneven, and inequitable, with high-density green areas concentrated in certain urban zones while others remain underserved. These findings highlight the importance of integrating policy, planning, and community participation to ensure that UGI delivers maximum climate adaptation benefits.

In conclusion, UGI represents a practical, cost-effective, and sustainable nature-based solution for climate adaptation in urban areas. For it to achieve long-term success, cities must adopt robust policy frameworks, institutional coordination, sustainable financing, and inclusive engagement strategies. When combined with traditional grey infrastructure, UGI can enhance urban resilience, reduce vulnerability to climate extremes, and support broader sustainability goals, positioning cities to respond effectively to ongoing climate challenges.

Recommendations

Strengthening urban green infrastructure (UGI) for climate adaptation requires the development of dedicated policies that clearly outline standards, implementation frameworks, and accountability measures to sustain green interventions across cities. Integrating UGI into existing urban planning instruments such as master plans, zoning regulations, and building codes is equally crucial to ensure that green spaces, permeable surfaces, and vegetation-based solutions become mandatory components of urban development. This integration should be supported by sustainable financing mechanisms, including green funds, public private

partnerships, and community-based financing models that guarantee long-term maintenance and operational efficiency of UGI assets.

Additionally, strengthening public engagement and awareness is vital for enhancing stewardship, increasing community participation, and ensuring behavioural change toward urban environmental management. Local institutions must build technical and administrative capacity to plan, implement, and monitor UGI initiatives effectively, supported by improved inter-agency collaboration. Finally, continuous research, environmental monitoring, and adaptive management strategies are essential to track ecosystem performance, assess climate adaptation outcomes, and guide evidence-based decision-making. Together, these measures provide a comprehensive pathway for maximizing the climate resilience and sustainability benefits of urban green infrastructure.

REFERENCES

Adeyanju, O. I., Akpotu, E., Efeni, O. S., & Obomejero, J. (2025). Green building strategies for climate resilience in flood-prone areas in Nigeria: A review. *African Research Reports*, 1(3), 74–84.

IJASR. (2023). The role of green infrastructure in urban flood mitigation and sustainable water management. *International Journal of Applied and Scientific Research*, 2(11).

Li, Y., Svenning, J.-C., Zhou, W., Zhu, K., Abrams, J. F., Lenton, T. M., & Dunn, R. R. (2023). Global inequality in cooling from urban green spaces and its climate change adaptation potential. *medRxiv*.

Nyamumbo, A., & Kasuku, J. (2024). Urban green infrastructure in sub-Saharan Africa: Opportunities and governance challenges. *Journal of Urban Ecology*, 8(1), 55–70.

Sustainability. (2023). Urban green infrastructure for climate-resilient cities: A systematic review and thematic synthesis of environmental, social, and economic benefits (2000–2022). *Sustainability*, 15(7), 1285.

Tauhid, F. A. (2025). Urban green infrastructure for climate resilience: Integrating green infrastructure into climate disaster mitigation strategies. *Nature: National Academic Journal of Architecture*, 5(1), 45–63.

Water. (2020). Green infrastructure as an urban heat island mitigation strategy: A review. *Water*, 12(12), 3577.

“Green Infrastructure for Climate Resilience.” (2023). In *Urban Climate Adaptation Strategies* (pp. 123–142). Springer.

